• Title/Summary/Keyword: water quality characteristic

Search Result 327, Processing Time 0.027 seconds

Multivariate Analysis of Water Quality Data at 14 Stations in the Geum-River Watershed (금강유역 14개 관측점의 수질자료를 이용한 수질의 다변량분석)

  • 임창수
    • Journal of Environmental Science International
    • /
    • v.8 no.3
    • /
    • pp.331-336
    • /
    • 1999
  • The monthly water quality data measured at 14 stations located in the Geum-River watershed were clustered into 2 to 7 clusters. Furthermore, factor analyses were conducted on Gabcheon and Yugucheon to characterize the water qualtiy, based on the information obtained from the results of culster analysis. The results of cluster analysis show that the water quality charactersitic of main stream of the Geum-River is somewhat different from that of substream of the Geum-River. Furthermore, the water quality characteristic of Gabcheon which is expected to have the most serious water quality problems in the Geum-River watershed shows the most different water quality characteristic from Yugucheon. Based ont he factor loadings in each factor, Gabcheon and Yugucheon have their own water quality characteristics. This is mainly because of composite factors such as different population density, industrial activities, and land use conditions in Gabcheon and Yugucheon subwatersheds.

  • PDF

Influence of Precipitation Characteristic on the Rainfall Water Quality (강우특성이 우수수질에 미치는 영향)

  • Lee, Chang-Soo
    • Journal of Environmental Science International
    • /
    • v.16 no.7
    • /
    • pp.805-811
    • /
    • 2007
  • The purpose of this study was to invesitigate relationship between rainfall water quality and precipitation characteristic during the accumulated rainfall and rainless period. As the results of the analysis, rainfall water quality was improved in the rainfall duration. Correlation coefficients between rainwater quality and accumulated rainfall were $0.88{\sim}0.99$ except $Cl^-$. and that between rainless period and initial rainfall water quality were $0.62{\sim}0.75$. During the Asian dust event, concentration of the turbidity, BOD and electric conductivity were high. Therefore, it shows that the rainfall water quality is effected by atmospheric conditions before the rainfall events.

Watershed Selection for Diffuse Pollution Management Based on Flow Regime Alteration and Water Quality Variation Analysis (유황분석과 수질변화 평가를 통한 비점오염원 관리대상지역 선정방법 연구)

  • Jung, Woohyeuk;Yi, Sangjin;Kim, Geonha;Jeong, Sangman
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.2
    • /
    • pp.228-234
    • /
    • 2011
  • The goal of water quality management on stream and watershed is to focus not on discharged loads management but on a water quality management. Discharged loads management is not goal of water quality management but way for perform with total maximum daily loads management. It is necessary to estimate the relation between non-point source with stromwater runoff (NPSSR) and water quality to select a watershed where it is required to manage NPSSR for water quality improvement. To evaluate the effects of NPSSR on stream's water quality, we compare the aspects of water quality in dry and wet seasons using flow duration curve analysis based on flow rate variation data by actual surveying. In this study we attempt to quantify the variation characteristic of water quality and estimate the Inflow characteristic of pollution source with water quality and flow rate monitoring on 10 watersheds. We try to estimate water quality and flow rate by regression analysis and try again regression analysis with each high and low water quality data more than estimations. An analysis of relation between water quality and flow rate of 10 watersheds shows that the water quality of the Nonsan and the Ganggyeong streams had been polluted by NPSSR pollutants. Other eight streams were important point source more than NPSSR. It is wide variation range of $BOD_5$ also high average concentration of $BOD_5$. We have to quantify water quality variation by cv1 in wet season and cv365 in dry season with comparing the estimate of high water quality and low water quality. This method can be used to indicator for water quality variation according to flow rate.

A Study on the Hydraulic Characteristic Extraction of Lake using GSIS (GSIS를 이용한 호수의 수리학적 특성 추출에 관한 연구)

  • 성동권;전형섭;박성규;정영동;조기성
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.18 no.1
    • /
    • pp.67-73
    • /
    • 2000
  • The water quality of inland stream is polluting with industrialization and urbanization, and with that water quality of lake also deteriorated, to manage water quality pollution problem of lake, new water quality management method is needed. As a pilot study of the method that manage water quality of lake using GSIS(Geo-Spatial Information System), we study the method which automatically extract the hydraulic characteristic informations of lake in GSIS environment. Also, as an example of practical use of the extracted hydraulic characteristic information of lake, we carry out the characteristic analysis of waterbody flow using finite different method. With the automation the extraction procedure of hydraulics characteristic information needed in characteristic analysis of waterbody flow, we carried out the analysis efficiently. Particularly, with the extraction of section information on lake not in layout form, in analyzable form, we make the analysis that section information of lake was indispenably required(e.g. stratification analysis) possible in GSIS environment.

  • PDF

Approaches to Internal Corrosion Control Technologies by Controlling Water Quality in Water Treatment Systems (수질제어를 통한 관 내부 부식방지 기술의 정수처리공정 적용방안)

  • Seo, Dae-Keun;Wang, Chang-Keun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.4
    • /
    • pp.509-518
    • /
    • 2006
  • Although final water of domestic water treatment plants almost contains highly corrosive characteristics, the countermeasures for eliminating internal corrosion of pipeline system have not been conducted yet by controlling water quality in plants. The technologies of internal corrosion control are to control water quality parameters(pH, Alkalinity, and Calcium Hardness etc.) and to use corrosion inhibitor. Under the conditions of domestic water treatment, first of all, the technologies of adjusting water quality parameters has to be considered. Otherwise, The technology of using corrosion inhibitor is favorably thought to be applied with the technology of adjusting water quality parameters in accordance with the result of availability for water treatment process. Since the technology of adjusting water quality parameter influences on other water treatment processes, the guideline of water quality management to be apt for water quality characteristic is required to be estabilished. While the selection of proper chemicals and technologies is dependent upon the raw water characteristics and water treatment process, typically, the technology of $Ca(OH)_2$ & $CO_2$ additions is considered more effective than other technologies in order to adjust pH and Alkalinity, increase $Ca^{2+}$ and form $CaCO_3$ film

Variations of Water Quality after Construction of Keum River Estuary Barrage (금강하구둑 건설후의 수질변화)

  • KIM Jong-Gu;YOU Sun-Jae;KWON Jung-No
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.5
    • /
    • pp.685-694
    • /
    • 1998
  • To evaluate the water quality characteristic after construction of Keum river estuary barrage, water quality analysis were conducted on August October in 1995 and January, May in 1996 respectively. The results were summarized as follows. The concentrations of COD were in the range of 1.01~5.10 (mean 2.50)mg/$\ell$ for surface water and 0.51$\~$6.68 (1.88)mg/$\ell$ for bottom water. The concentrations of dissolved inorganic nitrogen (DIN) were in the range of 1.26$\~$105.91 (29.66)$\mu$g-at/$\ell$ for surface water and 1.42$\~$68.38 (19.12)$\mu$g-at/$\ell$ for bottom water. The concentrations of phosphate phosphorus were in the range of ND$\~$0.99 (0.34)$\mu$g-at/$\ell$ for surface water and 0.17$\~$1.04 (0.49)$\mu$g-at/$\ell$ for bottom water. The nitrogen ratio to the phosphorus were as high as 3.5$\~$849.5 (146.5). Therefore, Phosphate phosphorus was playing an important role in phytoplankton growth as limiting factor in Keum river estuary. The correlation coefficient of salinity and DIN according to COD was shown to -0.757 and -0.874 respectivity. Mean values of eutrophicaton indies were calculated to 9.7, 7.2 for surface and bottom water, these values were exceeding 1, the value of eutrophication criteria. Especially station 1$\~$3 were shown over 10 as eutrophication indices. Therefore, Keum river estuary could be evaluate to possibility area for breakout of red tides.

  • PDF

A Study on Measuring the Similarity Among Sampling Sites in Lake Yongdam with Water Quality Data Using Multivariate Techniques (다변량기법을 활용한 용담호 수질측정지점 유사성 연구)

  • Lee, Yosang;Kwon, Sehyug
    • Journal of Environmental Impact Assessment
    • /
    • v.18 no.6
    • /
    • pp.401-409
    • /
    • 2009
  • Multivariate statistical approaches to classify sampling sites with measuring their similarity by water quality data and understand the characteristics of classified clusters have been discussed for the optimal water quality monitering network. For empirical study, data of two years (2005, 2006) at the 9 sampling sites with the combination of 2 depth levels and 7 important variables related to water quality is collected in Yongdam reservoir. The similarity among sampling sites is measured with Euclidean distances of water quality related variables and they are classified by hierarchical clustering method. The clustered sites are discussed with principal component variables in the view of the geographical characteristics of them and reducing the number of measuring sites. Nine sampling sites are clustered as follows; One cluster of 5, 6, and 7 sampling sites shows the characteristic of low water depth and main stream of water. The sites of 2 and 4 are clustered into the same group by characteristics of hydraulics which come from that of main stream. But their changing pattern of water quality looks like different since the site of 2 is near to dam. The sampling sites of 3, 8, and 9 are individually positioned due to the different tributary.

A Study on the Spatial Strength and Cluster Analysis at the Unit Watershed for the Management of Total Maximum Daily Loads (다변량통계분석을 이용한 수질오염총량관리 단위유역별 오염물질 배출특성 분석 - 한강수계를 중심으로 -)

  • Choi, Ok Youn;Kim, Ki Hoon;Han, Ihn Sup
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.6
    • /
    • pp.700-714
    • /
    • 2015
  • The characteristic of the water quality and pollutant discharge was analyzed at the units watershed of the total amount management in Han-river basin, and after classified in a similar area by multivariate statistical analysis, the main trend such as the water quality trend and pollutant discharge characteristic were analyzed. As a result of this study, the density of the pollutant at the unit watershed is not necessarily identified as discharge density, and the primary management watershed and targeted substances were analyzed depending on the operating status of the environmental infrastructure in watershed and the main pollution factor and discharge path per pollutants. As a result of cluster analysis, watersheds were classified into four groups according to discharge characteristics. It will be used when selecting target area of primary management that is appropriate to the characteristics of each river and establishing efficient water quality improvement plans.

CTQ derived using the new Module device convergence and QFD can be mounted on the dominance Products : Focusing on the sparkling water purifier Case (시장지배제품에 장착 가능한 새로운 Module장치 융합 및 QFD를 활용한 CTQ 도출 : 탄산수 정수기 사례를 중심으로)

  • Song, In-Cheol;Hwang, Dong-Ryong;Lee, Seung-Hee
    • Journal of Digital Convergence
    • /
    • v.13 no.5
    • /
    • pp.195-204
    • /
    • 2015
  • This paper CTQ(Critical to Quality) to draw, aim to derive a key quality factor reflects the customer's requirements by utilizing the QFD technique for sparkling water purifier device that combines the new module. Tasting participants, consumers and New Module device intended for developers who develop and conduct a survey and FGI (Focus Group Interview) VOC(Voice of Customer) to draw, drawn by the EC through the developer VOC and EC (Engineering Characteristic) and charts the relationship between the phases was prepared HOQ(House of Quality). Sparkling water purifier through the HOQ chart certain taste, sound, running water, CO2 cylinder replacement cycle, we obtain results that element is an important quality factors such as ease of use. These factors are closely related to each component regulators and Module device (mixing) associated with the taste of water, booster pumps, and deliver results that the solenoid is considered the most critical part.