• Title/Summary/Keyword: water quality change

Search Result 1,226, Processing Time 0.035 seconds

The Estimation of Probability Distribution by Water Quality Constituents Discharged from Paddy Fields during Non-storm Period (영농형태별 영농기간 동안 비강우시 논 유출수의 수질 항목별 확률분포 추정)

  • Choi, DongHo;Hur, Seung-Oh;Kim, Min-Kyeong;Yeob, So-Jin;Choi, Soon-Kun
    • Korean Journal of Ecology and Environment
    • /
    • v.52 no.1
    • /
    • pp.21-27
    • /
    • 2019
  • Analysis of water quality distribution is very important for river water quality management. Recently, various studies have been conducted on the analysis of water quality distribution according to reduction methods of nonpoint pollutant. The objective of this study was to select the probability distributions of water quality constituents (T-N, T-P, COD, SS) according to the farming forms (control, slow release fertilizer, water depth control) during non-storm period in the paddy fields. The field monitoring was conducted monitoring site located in Baeksan-myun, Buan-gun, Jeollabuk-do, Korea during non-storm period from May to September in 2016. Our results showed that there were no differences in water quality among three different farming forms, except for SS of control and water depth control. K-S method was used to analyzed the probability distributions of T-N, T-P, COD and SS concentrations discharged from paddy fields. As a results of the fitness analysis, T-N was not suitable for the normal probability distribution in the slow release fertilizer treatment, and the log-normal probability distribution was not suitable for the T-P in control treatment. The gamma probability distribution showed that T-N and T-P in control and slow release fertilizer treatment were not suitable. The Weibull probability distribution was found to be suitable for all water quality constituents of control, slow release fertilizer, and water depth control treatments. However, our results presented some differences from previous studies. Therefore, it is necessary to analyze the characteristics of pollutants flowing out in difference periods according to various farming types. The result of this study can help to understand the water quality characteristics of the river.

Estimation of Welfare Change from Water Quality Degradation (수질 악화로 인한 후생변화의 추정)

  • Jeon, Chul-Hyun;Lee, Chung-Sun;Shin, Hio-Jung
    • Journal of Environmental Policy
    • /
    • v.9 no.2
    • /
    • pp.135-155
    • /
    • 2010
  • The purposes of the paper are to estimate welfare change from water quality degradation by using contingent valuation method in Namdae stream of Gangrung and identify what factors of Namdae stream are important to Gangrun citizens. The study results show their total WTP per year and per household, \117,040 to improve Namdae stream quality from grade 3 to grade 1, including monetary WTP \87,502 plus opportunity cost of volunteering time for protection campaign, \29,538. The amount of total welfare change from water quality degradation based on the total WTP estimated above is calculated to be \27 billion of which the amount, as a sort of damage cost from water quality degraded, is so huge. All projects and policies related to natural environments, therefore, should consider both indirect and direct effects from them because natural environments have the irreversibility once degraded or deteriorated and would ultimately be influential on humans, both current and future generations, with tremendous amounts of time and costs beyond our imagination.

  • PDF

Water Quality Management of Agricultural Lakes Through Analysis of Agricultural Water Quality Survey Network Data (농업용수 수질측정망 자료 분석을 통한 농업용 호소의 수질관리방안)

  • Kim, Ho Il;Kim, Hyung Joong
    • KCID journal
    • /
    • v.19 no.1
    • /
    • pp.19-29
    • /
    • 2012
  • The data of the agricultural water quality survey network was analyzed between from 1990 to 2010 in order to propose effective plans for water quality management by analyzing the characteristics of agricultural lakes and the change of water quality. The result of the analysis shows that there is a correlation between water quality and items that can be a function of water depth such as dam height, dam length, dam height/dam length ratio and active storage/surface area of lake ratio. This means that, Korean agricultural lakes, there is a correlation between water quality and water depth. Water quality of the lakes that have lower than 5m of active storage/surface area of lake ratio (effective water depth) especially tends to get worse rapidly. The Chl-a and COD concentration of Korean agricultural lakes have a tendency to increase between June and September. Therefore, we recommend first taking a water quality improvement project for the lakes preformed watershed management project, and taking a preventive short-term water quality improvement project for the unperformed lakes before June among lakes that have lower than 5m of effective water depth.

  • PDF

Water quality forecasting on upstream of chungju lake by flow duration (충주호 상류지역의 유황별 장래수질예측)

  • 이원호;한양수;연인성;조용진
    • Journal of environmental and Sanitary engineering
    • /
    • v.17 no.4
    • /
    • pp.1-9
    • /
    • 2002
  • In order to define about concern with discharge and water-quality, it is calculated drought flow, low flow, normal flow and wet flow in Chungju watershed from flow duration analysis. Water quality modeling study is performed for forecasting at upstream of Chungju lake. It is devided method of modeling into before and after the equipment of environmental treatment institution. And it is estimated the change of water quality. Before the equipment of environmental treatment, BOD concentration is increased from 23000 to 2006 years at all site and decrease on 2012 years. The rate of increasing BOD concentration is showed height between 2000 years and 2003 years most of all site. And after the equipment of environmental treatment, it is showed first grade of BOD water quality in most of sample site beside Jucheon river. The result of water quality modeling using drought flow showed that a lot of pollution occurred. And water quality using wet flow is good, so much discharge make more improve water quality than little discharge.

Characteristics of Trend and Pattern for Water Quality Monitoring Networks Data using Seasonal-kendall, SOM and RDA on the Mulgeum in the Nakdong River (경향성 및 패턴 분석을 이용한 낙동강 물금지역의 수질 특성)

  • Ahn, Jung-Min;Lee, In-Jung;Jung, Kang-Young;Kim, Jueon;Lee, Kwonchul;Cheon, Seuk;Lyu, Siwan
    • Journal of Environmental Science International
    • /
    • v.25 no.3
    • /
    • pp.361-371
    • /
    • 2016
  • Ministry of Environment has been operating water quality monitoring network in order to obtain the basic data for the water environment policies and comprehensively understand the water quality status of public water bodies such as rivers and lakes. The observed water quality data is very important to analyze by applying statistical methods because there are seasonal fluctuations. Typically, monthly water quality data has to analyze that the transition comprise a periodicity since the change has the periodicity according to the change of seasons. In this study, trends, SOM and RDA analysis were performed at the Mulgeum station using water quality data for temperature, BOD, COD, pH, SS, T-N, T-P, Chl-a and Colon-bacterium observed from 1989 to 2013 in the Nakdong River. As a result of trends, SOM and RDA, the Mulgeum station was found that the water quality is improved, but caution is required in order to ensure safe water supply because concentrations in water quality were higher in the early spring(1~3 month) the most.

Smart irrigation technique for agricultural water efficiency against climate change (기후변화 대응 물 효율성 증대를 위한 스마트 관개기술 연구)

  • Kim, Minyoung;Jeon, Jonggil;Kim, Youngjin;Choi, Yonghun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.198-198
    • /
    • 2017
  • Climate change causes unpredictable and erratic climatic patterns which affects crop production in agriculture and threatens public health. To cope with the challenges of climate change, sustainable and sound growth environment for crop production should be secured. Recent attention has been given to the development of smart irrigation system using sensors and wireless network as a solution to achieve water conservation as well as improvement in crop yield and quality with less water and labor. This study developed the smart irrigation technique for farmlands by monitoring the soil moisture contents and real-time climate condition for decision-making support. Central to this design is micro-controller which monitors the farm condition and controls the distribution of water on the farm. In addition, a series of laboratory studies were conducted to determine the optimal irrigation pattern, one time versus plug time. This smart technique allows farmers to reduce water use, improve the efficiency of irrigation systems, produce more yields and better quality of crops, reduce fertilizer and pesticide application, improve crop uniformity, and prevent soil erosion which eventually reduce the nonpoint source pollution discharge into aquatic-environment.

  • PDF

New Zealand Hydrology: Key Issues and Research Directions

  • Davie, T.J.A.
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1-7
    • /
    • 2007
  • New Zealand is a hydrologically diverse and active country. This paper presents an overview of the major hydrological issues and problems facing New Zealand and provides examples of some the research being undertaken to solve the problems. Fundamental to any environmental decision making is the provision of good quality hydrometric data. Reduced funding for the national hydrometric network has meant a reduction in the number of monitoring sites, the decision on how to redesign the network was made using information on geographic coverage and importance of each site. New Zealand faces a major problem in understanding the impacts of rapid land use change on water quantity and quality. On top of the land use change is overlain the issue of agricultural intensification. The transfer of knowledge about impacts of change at the small watershed scale to much larger, more complex watersheds is one that is attracting considerable research attention. There is a large amount of research currently being undertaken to understand the processes of water and nutrient movement through the vadose zone into groundwater and therefore understanding the time taken for leached nutrients to reach receiving water bodies. The largest water management issue of the past 5 years has been based around fair and equitable water allocation when there is increasing demand for irrigation water. Apart from policy research into market trading for water there has been research into water storage and transfer options and improving irrigation efficiency. The final water management issue discussed concerns the impacts of hydrological extremes (floods and droughts). This is of particular concern with predictions of climate change for New Zealand suggesting increased hydrological extremes. Research work has concentrated on producing predictive models. These have been both detailed inundation models using high quality LIDAR data and also flood models for the whole country based on a newly interpolated grid network of rainfall.

  • PDF

Evaluation of estuary reservoir management based on robust decision making considering water use-flood control-water quality under Climate Change (이수-치수-수질을 고려한 기후변화 대응 로버스트 기반 담수호 관리 평가)

  • Kim, Seokhyeon;Hwang, Soonho;Kim, Sinae;Lee, Hyunji;Kwak, Jihye;Kim, Jihye;Kang, Moonseong
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.6
    • /
    • pp.419-429
    • /
    • 2023
  • The objective of this study was to determine the management water level of an estuary reservoir considering three aspects: the water use, flood control and water quality, and to use a robust decision-making to consider uncertainty due to climate change. The watershed-reservoir linkage model was used to simulate changes in inflow due to climate change, and changes in reservoir water level and water quality. Five management level alternatives ranging from -1.7 El.m to 0.2 El.m were evaluated under the SSP1, 2, 3, and 5 scenariosof the ACCESS-CM2 Global Climate Model. Performance indicators based on period-reliability were calculated for robust decision-making considering the three aspects, and regret was used as a decision indicator to identify the alternatives with the minimum maximum regret. Flood control failure increased as the management level increased, while the probability of water use failure increased as the management level decreased. The highest number of failures occurred under the SSP5 scenario. In the water quality sector, the change in water quality was relatively small with an increase in the management level due to the increase in reservoir volume. Conversely, a decrease in the management level resulted in a more significant change in water quality. In the study area, the estuary reservoir was found to be problematic when the change in water quality was small, resulting in more failures.

A Relative Atomspheric Correction Methods for Water Quality Factors Extraction from Landsat TM data (Landsat TM data로부터 수질인자 추출을 위한 상대적 대기 보정 방법)

  • Yang, In-Tae;Kim, Eung-Nam;Choi, Youn-Kwan
    • Journal of Industrial Technology
    • /
    • v.18
    • /
    • pp.17-25
    • /
    • 1998
  • Recently, there are a lot of studies to use a satellite image data in order to investigate a simultaneous change of a wide range area as a lake. However, many cases of a water quality research occur as problem when we try to extract the water quality factors from the satellite image data, because of the atmosphere scattering exert as bad influence on a result of analysis. In this study, and attempt was made to select the relative atmospheric correction method for the water quality factors extraction from the satellite image data. And also, the time-series analysis of the water quality factors extraction from the satellite image data. And also, the time-series analysis of the water quality factors was performed by using the multi-temporal image data.

  • PDF

Statistical Analysis on the Quality of Surface Water in Jinhae Bay during Winter and Spring (동계와 춘계 진해만 표층수질에 대한 통계분석)

  • Kim, Dong-Seon;Choi, Hyun-Woo;Kim, Kyung-Hee;Jeong, Jin-Hyun;Baek, Seung-Ho;Kim, Yong-Ok
    • Ocean and Polar Research
    • /
    • v.33 no.3
    • /
    • pp.291-301
    • /
    • 2011
  • To investigate major factors controlling variations in water quality, principal component analysis and cluster analysis were used to analyze data sets of 12 parameters measured at 23 sampling stations of Jinhae Bay during winter and spring. Principal component analysis extracted three major factors controlling variations of water quality during winter and spring. In winter, major factors included freshwater input, polluted material input, and biological activity. Whereas in spring they were polluted material input, freshwater input, and suspended material input. The most distinct difference in the controlling factors between winter and spring was that the freshwater input was more important than the polluted material input in winter, but the polluted material input was more important than the freshwater input in spring. Cluster analysis grouped 23 sampling stations into four clusters in winter and five clusters in spring respectively. In winter, the four clusters were A (station 5), B (stations 1, 2), C (station 4), and D (the remaining stations). In spring, the five clusters included A (station 5), B (station 1), C (station 3), D (station 6), and E (the remaining stations). Intensive management of the water quality of Masan and Hangam bays could improve the water quality of Jinhae Bay since the polluted materials were mainly introduced into Jinhae Bay through Masan and Hangam bays.