• 제목/요약/키워드: water quality change

검색결과 1,235건 처리시간 0.035초

영농형태별 영농기간 동안 비강우시 논 유출수의 수질 항목별 확률분포 추정 (The Estimation of Probability Distribution by Water Quality Constituents Discharged from Paddy Fields during Non-storm Period)

  • 최동호;허승오;김민경;엽소진;최순군
    • 생태와환경
    • /
    • 제52권1호
    • /
    • pp.21-27
    • /
    • 2019
  • 본 연구에서는 영농기간 동안 비강우시에 영농형태에 따른 논에서 유출되는 T-N, T-P, COD, SS의 적정 확률분포를 분석하기 위해 2016년 전라북도 부안군 논 유역에서 모니터링을 수행하였다. 확률분포모형 선정을 위해 Kolmogorov-Smirnov 검정방법을 적용한 결과 Weibull 분포모형에서 대조구, 완효성비료처리구, 물꼬관리처리구의 모든 수질 항목에서(T-N, T-P, COD, SS) 적합성이 있는 것으로 나타났다. 이는 강우시에 모든 수질 항목에서 Log-Normal 분포모형과 Gamma 분포모형에서 적합성이 있는 것으로 보고한 선행연구 결과와는 다른 특성을 보였다. 따라서, 하천의 수질관리를 위해서는 시기별 적합한 확률분포모형을 적용해야 한다. 본 연구 결과에서 분석된 비강우시 영농형태별 (대조구, 완효성비료처리구, 물꼬관리처리구) 확률분포모형에 의해 선정된 수질 항목별 중앙값과 하천의 수질을 연계 분석한다면 논에서 유출되는 수질이 하천에 미치는 영향을 분석할 수 있을 것으로 판단된다.

수질 악화로 인한 후생변화의 추정 (Estimation of Welfare Change from Water Quality Degradation)

  • 전철현;이충선;신효중
    • 환경정책연구
    • /
    • 제9권2호
    • /
    • pp.135-155
    • /
    • 2010
  • 본 논문의 목적은 강릉 남대천처럼 시민들과 매우 밀접한 관계에 있는 자연환경의 질이 악화될 경우 시민들의 후생에 얼마나 큰 영향을 미치는지를 조건부가치측정법을 통하여 평가하는데 있다. 분석 결과, 강릉 남대천은 상수원의 제공뿐만 아니라, 공익적 기능, 생태적 기능, 물놀이, 휴양 및 심미적 만족감을 제공하는 장소로서 중요하다고 인식되고 있으며 강릉 남대천의 수질을 개선하기 위한 총 지불의사액은 가구당 연간 117,040원이 도출되었다. 먼저 수질개선 부담금의 지불에 가구당 연평균 약 87,502원으로 나타났고, 자원봉사에 대한 기회비용 측면에서는 연평균 29,538원으로 나타났다. 위의 결과를 근거로 강릉시 전체로 확대할 경우 수질 악화에 의한 간접적인 후생변화는 연간 약 270억원으로 산출되었다. 이처럼 수질 악화에 의한 후생변화는 매우 크다고 볼 수 있다. 따라서 자연환경은 비가역적인 특징을 가지면서 한번 파괴되면 복원되는데 많은 시간과 비용이 수반되기 때문에, 자연환경의 변화는 궁극적으로 인간에게 영향을 미치게 된다. 그러므로 의사결정자들은 자연환경과 관련된 정책을 수립할 때 시장에서 평가되는 부분뿐만 아니라 시장에서 거래가 되지 않는 간접적인 부분까지도 충분히 고려하여야 정책의 효율성과 후생 증대의 목표를 동시에 달성할 수 있다.

  • PDF

농업용수 수질측정망 자료 분석을 통한 농업용 호소의 수질관리방안 (Water Quality Management of Agricultural Lakes Through Analysis of Agricultural Water Quality Survey Network Data)

  • 김호일;김형중
    • 한국관개배수논문집
    • /
    • 제19권1호
    • /
    • pp.19-29
    • /
    • 2012
  • The data of the agricultural water quality survey network was analyzed between from 1990 to 2010 in order to propose effective plans for water quality management by analyzing the characteristics of agricultural lakes and the change of water quality. The result of the analysis shows that there is a correlation between water quality and items that can be a function of water depth such as dam height, dam length, dam height/dam length ratio and active storage/surface area of lake ratio. This means that, Korean agricultural lakes, there is a correlation between water quality and water depth. Water quality of the lakes that have lower than 5m of active storage/surface area of lake ratio (effective water depth) especially tends to get worse rapidly. The Chl-a and COD concentration of Korean agricultural lakes have a tendency to increase between June and September. Therefore, we recommend first taking a water quality improvement project for the lakes preformed watershed management project, and taking a preventive short-term water quality improvement project for the unperformed lakes before June among lakes that have lower than 5m of effective water depth.

  • PDF

충주호 상류지역의 유황별 장래수질예측 (Water quality forecasting on upstream of chungju lake by flow duration)

  • 이원호;한양수;연인성;조용진
    • 환경위생공학
    • /
    • 제17권4호
    • /
    • pp.1-9
    • /
    • 2002
  • In order to define about concern with discharge and water-quality, it is calculated drought flow, low flow, normal flow and wet flow in Chungju watershed from flow duration analysis. Water quality modeling study is performed for forecasting at upstream of Chungju lake. It is devided method of modeling into before and after the equipment of environmental treatment institution. And it is estimated the change of water quality. Before the equipment of environmental treatment, BOD concentration is increased from 23000 to 2006 years at all site and decrease on 2012 years. The rate of increasing BOD concentration is showed height between 2000 years and 2003 years most of all site. And after the equipment of environmental treatment, it is showed first grade of BOD water quality in most of sample site beside Jucheon river. The result of water quality modeling using drought flow showed that a lot of pollution occurred. And water quality using wet flow is good, so much discharge make more improve water quality than little discharge.

경향성 및 패턴 분석을 이용한 낙동강 물금지역의 수질 특성 (Characteristics of Trend and Pattern for Water Quality Monitoring Networks Data using Seasonal-kendall, SOM and RDA on the Mulgeum in the Nakdong River)

  • 안정민;이인정;정강영;김주언;이권철;천세억;류시완
    • 한국환경과학회지
    • /
    • 제25권3호
    • /
    • pp.361-371
    • /
    • 2016
  • Ministry of Environment has been operating water quality monitoring network in order to obtain the basic data for the water environment policies and comprehensively understand the water quality status of public water bodies such as rivers and lakes. The observed water quality data is very important to analyze by applying statistical methods because there are seasonal fluctuations. Typically, monthly water quality data has to analyze that the transition comprise a periodicity since the change has the periodicity according to the change of seasons. In this study, trends, SOM and RDA analysis were performed at the Mulgeum station using water quality data for temperature, BOD, COD, pH, SS, T-N, T-P, Chl-a and Colon-bacterium observed from 1989 to 2013 in the Nakdong River. As a result of trends, SOM and RDA, the Mulgeum station was found that the water quality is improved, but caution is required in order to ensure safe water supply because concentrations in water quality were higher in the early spring(1~3 month) the most.

기후변화 대응 물 효율성 증대를 위한 스마트 관개기술 연구 (Smart irrigation technique for agricultural water efficiency against climate change)

  • 김민영;전종길;김영진;최용훈
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2017년도 학술발표회
    • /
    • pp.198-198
    • /
    • 2017
  • Climate change causes unpredictable and erratic climatic patterns which affects crop production in agriculture and threatens public health. To cope with the challenges of climate change, sustainable and sound growth environment for crop production should be secured. Recent attention has been given to the development of smart irrigation system using sensors and wireless network as a solution to achieve water conservation as well as improvement in crop yield and quality with less water and labor. This study developed the smart irrigation technique for farmlands by monitoring the soil moisture contents and real-time climate condition for decision-making support. Central to this design is micro-controller which monitors the farm condition and controls the distribution of water on the farm. In addition, a series of laboratory studies were conducted to determine the optimal irrigation pattern, one time versus plug time. This smart technique allows farmers to reduce water use, improve the efficiency of irrigation systems, produce more yields and better quality of crops, reduce fertilizer and pesticide application, improve crop uniformity, and prevent soil erosion which eventually reduce the nonpoint source pollution discharge into aquatic-environment.

  • PDF

New Zealand Hydrology: Key Issues and Research Directions

  • Davie, T.J.A.
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2007년도 학술발표회 논문집
    • /
    • pp.1-7
    • /
    • 2007
  • New Zealand is a hydrologically diverse and active country. This paper presents an overview of the major hydrological issues and problems facing New Zealand and provides examples of some the research being undertaken to solve the problems. Fundamental to any environmental decision making is the provision of good quality hydrometric data. Reduced funding for the national hydrometric network has meant a reduction in the number of monitoring sites, the decision on how to redesign the network was made using information on geographic coverage and importance of each site. New Zealand faces a major problem in understanding the impacts of rapid land use change on water quantity and quality. On top of the land use change is overlain the issue of agricultural intensification. The transfer of knowledge about impacts of change at the small watershed scale to much larger, more complex watersheds is one that is attracting considerable research attention. There is a large amount of research currently being undertaken to understand the processes of water and nutrient movement through the vadose zone into groundwater and therefore understanding the time taken for leached nutrients to reach receiving water bodies. The largest water management issue of the past 5 years has been based around fair and equitable water allocation when there is increasing demand for irrigation water. Apart from policy research into market trading for water there has been research into water storage and transfer options and improving irrigation efficiency. The final water management issue discussed concerns the impacts of hydrological extremes (floods and droughts). This is of particular concern with predictions of climate change for New Zealand suggesting increased hydrological extremes. Research work has concentrated on producing predictive models. These have been both detailed inundation models using high quality LIDAR data and also flood models for the whole country based on a newly interpolated grid network of rainfall.

  • PDF

이수-치수-수질을 고려한 기후변화 대응 로버스트 기반 담수호 관리 평가 (Evaluation of estuary reservoir management based on robust decision making considering water use-flood control-water quality under Climate Change)

  • 김석현;황순호;김시내;이현지;곽지혜;김지혜;강문성
    • 한국수자원학회논문집
    • /
    • 제56권6호
    • /
    • pp.419-429
    • /
    • 2023
  • 본 연구의 목적은 미래 기후변화에 따른 담수호의 종합적 수자원 관리를 위하여, 이수-치수-수질을 모두 고려한 평가지표를 설정하고, 로버스트 의사결정 기법을 활용하여 담수호 관리수위 별 변화를 분석하고 평가하는데 있다. 기후변화에 따른 유입량 변화와 이에 따른 호소 수문, 수질 변화를 모의하기 위해 유역-호소 연계모델을 활용하였다. 관리수위는 -1.7 El.m부터 0.3 El.m 까지 5개의 대안을 설정하고 ACCESS-CM2 a Global Climate Model의 SSP1, 2, 3, 5 시나리오에 따른 변화를 평가하였다. 로버스트 의사결정을 위해 기간신뢰도 기반 이수-치수-수질 지표를 성과지표로 산정하고, 후회도를 결정지표로 최소의 최대후회도를 가지는 대안을 산정하고자 하였다. 대안 별 평가 결과 -1.2 El. m가 최적 관리수위로 산정되었다. 관리수위를 높게 설정할수록 치수적 실패에 낮게 설정할수록 이수적 실패에 가까워지는 것으로 나타났으며, SSP5 시나리오에서 가장 많은 실패가 발생하였다. 수질 부문에서는 관리수위를 상승시킬수록 저수지 체적 증가로 수질 변화가 적게 나타났으며, 낮출수록 수질 변화가 크게 나타났다. 하지만 현재 담수호의 수질 상태가 좋지 않아 관리수위를 상승시켜 수질 변화가 적었을 때 실패가 더 자주 발생하였다.

Landsat TM data로부터 수질인자 추출을 위한 상대적 대기 보정 방법 (A Relative Atomspheric Correction Methods for Water Quality Factors Extraction from Landsat TM data)

  • 양인태;김응남;최윤관
    • 산업기술연구
    • /
    • 제18권
    • /
    • pp.17-25
    • /
    • 1998
  • Recently, there are a lot of studies to use a satellite image data in order to investigate a simultaneous change of a wide range area as a lake. However, many cases of a water quality research occur as problem when we try to extract the water quality factors from the satellite image data, because of the atmosphere scattering exert as bad influence on a result of analysis. In this study, and attempt was made to select the relative atmospheric correction method for the water quality factors extraction from the satellite image data. And also, the time-series analysis of the water quality factors extraction from the satellite image data. And also, the time-series analysis of the water quality factors was performed by using the multi-temporal image data.

  • PDF

동계와 춘계 진해만 표층수질에 대한 통계분석 (Statistical Analysis on the Quality of Surface Water in Jinhae Bay during Winter and Spring)

  • 김동선;최현우;김경희;정진현;백승호;김영옥
    • Ocean and Polar Research
    • /
    • 제33권3호
    • /
    • pp.291-301
    • /
    • 2011
  • To investigate major factors controlling variations in water quality, principal component analysis and cluster analysis were used to analyze data sets of 12 parameters measured at 23 sampling stations of Jinhae Bay during winter and spring. Principal component analysis extracted three major factors controlling variations of water quality during winter and spring. In winter, major factors included freshwater input, polluted material input, and biological activity. Whereas in spring they were polluted material input, freshwater input, and suspended material input. The most distinct difference in the controlling factors between winter and spring was that the freshwater input was more important than the polluted material input in winter, but the polluted material input was more important than the freshwater input in spring. Cluster analysis grouped 23 sampling stations into four clusters in winter and five clusters in spring respectively. In winter, the four clusters were A (station 5), B (stations 1, 2), C (station 4), and D (the remaining stations). In spring, the five clusters included A (station 5), B (station 1), C (station 3), D (station 6), and E (the remaining stations). Intensive management of the water quality of Masan and Hangam bays could improve the water quality of Jinhae Bay since the polluted materials were mainly introduced into Jinhae Bay through Masan and Hangam bays.