• Title/Summary/Keyword: water productivity

Search Result 838, Processing Time 0.025 seconds

Application of Micropaticle Systems in Water Circuit Closure Programs

  • Howard Johnson;Ha, Derek A.rrington
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.33 no.5
    • /
    • pp.12-20
    • /
    • 2001
  • The consequence of water system closure and reduced water consumption in Paper Mills is increased white-water conductivity associated with increased total dissolved solids. This leads to difficulties man-aging the wet end chemistry of paper machines, mainly due to stearic hindrance effects on wet end chemical additives. This in turn causes poor productivity and Inefficient chemicals usage. The success of a number of projects is reported. The application and development of new multi-component micro-particle systems which can further assist in achieving a significant degree of system closure or Zero Effluent is described.

  • PDF

Conditions for the Production of Amylase and Protease in Making Wheat flour Nuluk by Rhizopus japonicas T2 (Rhizopus japonicus T2에 의한 밀가루 누룩 제조시 Amylase와 Protease의 생산조건)

  • 소명환
    • The Korean Journal of Food And Nutrition
    • /
    • v.6 no.2
    • /
    • pp.96-102
    • /
    • 1993
  • A Nuluk, a Korean traditional koji for brewing, was made with wheat flour and Rhizopus japonicus T2 which had a good aroma and strong abilities in producing saccharogenic and proteolytic enzymes, and cultural conditions for the production of those two enzymes were tested. The productivity of saccharogenic enzyme was markedly improved when Nuluk was made with unsteamed wheat flour as compared with that with steamed one, but that of acid protease was reduced. The addition of water containing 0.5% hydrochloric acid was unfavorable for the production of saccharogenic enzyme and neutral protease. The optimum ratio of water added to wheat flour for the production of saccharogenic enzyme and proteolytic enzyme was 28% on the basis of wheat flour. The productivity of saccharogenic enzyme was enhanced "when the Nuluk was molded after 10~20 hours precultivation but that of proteolytic enzyme was reduced as compared with no molding. The optimum temperature for the production of saccharogenic enzyme was 28f and that of proteolyic enzyme was also 28$^{\circ}C$. The optimum cultural time for the production of saccharogenic enzyme was 36 ~72 hours at 3$0^{\circ}C$ and that of proteolytic enzyme was 36 hours.ours.

  • PDF

Optmization of Culture Conditions and Nitrogen Sources for Production of Erythritol by Candida magnoliae. (Candida magnoliae에 의한 에리스리톨 생산을 위한 최적 배양환경과 질소원 선별)

  • 고은성;문관훈;한기철;유연우;서진호
    • Microbiology and Biotechnology Letters
    • /
    • v.28 no.6
    • /
    • pp.349-354
    • /
    • 2000
  • Culture conditions and nitrogen sources were optimized for production of erythritol, a natural sweetener, by Candida magnoliae M26. The optimal culture conditions were found to be culture temperature of $28^{\circ}C$, initial pH of 7, aeration of 1 vvm and agitation speed of 500 rpm in a 2.5 1 jar-fermentor. Glucose was chosen as the best carbon cource bsed on cell growth and erythritol productivity. Kight steep water(LSW) and corn steep liquor (CSL) which are by-products in starch processing from corn were tested as a nitrogen source substitute for yeast extract. The use of either LSW or CSL did not change the fermentation performance. The experimental results using LSW and CSL showed 1.5 times higher in cell growth and almost the same value in erythritol productivity com-pared with the control fermentation using yeast extract as a nitrogen source. These results suggested that either LSW of CSL could be used as a nitrogen source in a large-scale fermentation for erythritol production.

  • PDF

Acetone-Butanol-Ethanol (ABE) Production in Fermentation of Enzymatically Hydrolyzed Cassava Flour by Clostridium beijerinckii BA101 and Solvent Separation

  • Lepiz-Aguilar, Leonardo;Rodriguez-Rodriguez, Carlos E.;Arias, Maria Laura;Lutz, Giselle
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.8
    • /
    • pp.1092-1098
    • /
    • 2013
  • Cassava constitutes an abundant substrate in tropical regions. The production of butanol in ABE fermentation by Clostridium beijerinckii BA101 using cassava flour (CF) was scaled-up to bioreactor level (5 L). Optimized fermentation conditions were applied; that is, $40^{\circ}C$, 60 g/l CF, and enzymatic pretreatment of the substrate. The batch fermentation profile presented an acidogenic phase for the first 24 h and a solventogenic phase afterwards. An average of 37.01 g/l ABE was produced after 83 h, with a productivity of 0.446 g/l/h. Butanol production was 25.71 g/l with a productivity of 0.310 g/l/h, high or similar to analogous batch processes described for other substrates. Solvent separation by different combinations of fractioned and azeotropic distillation and liquid-liquid separation were assessed to evaluate energetic and economic costs in downstream processing. Results suggest that the use of cassava as a substrate in ABE fermentation could be a cost-effective way of producing butanol in tropical regions.

Influences of Wet-Pressing Types on Internal Structure of Paper (습부압착 방식이 종이의 내부구조에 미치는 영향)

  • Lee Jin-Ho;Park Jong-Moon
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.37 no.4 s.112
    • /
    • pp.32-37
    • /
    • 2005
  • To Increase the productivity of a paper machine, the maximization of the machine speed is a kind of simple way As the machine speed increases, more intense wet pressing is required to persist the outlet consistency of press part and reduce the water removal of dryer part. With more intense pressing, there are concerns that the quality of paper will be affected. This study was carried out to evaluate the influence of wet-pressing on internal structure of paper, The nip pressure at the first and third nip in triple nip press was controlled. Paper structures, strength properties and pore properties were evaluated. As a result, first nip pressure more strongly influenced the paper structural properties than third nip pressure in triple nip pressing condition. Because of the high water content and low wet-web strength of paper web in first nip, increasing the first nip pressure induced the incipient crushing of wet-web and then caused a potential of web break during the following coating or printing processes.

Simulating Evapotranspiration and Yield Responses of Rice to Climate Change using FAO-AquaCrop (FAO-AquaCrop을 이용한 기후변화가 벼 증발산량 및 수확량에 미치는 영향 모의)

  • Chung, Sang-Ok
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.3
    • /
    • pp.57-64
    • /
    • 2010
  • The impacts of climate change on yield and evapotranspiration of rice have been modeled using AquaCrop model developed by Food and Agriculture Organization (FAO). Climate change scenario downscaled by Mesoscale Model 5 (MM5) regional model from ECHO-G General Circulation Model (GCM) outputs by Korea Meteorological Research Institute (METRI) was used in this study. Monthly average climate data for baseline (1971-2000) and three time periods (2020s, 2050s and 2080s) were used as inputs to the AquaCrop model. The results showed that the evapotranspiration after transplanting was projected to increase by 4 % (2020s), 8 % (2050s) and 14 % (2080s), respectively, from the baseline value of 464 mm. The potential rice yield was 6.4 t/ha and water productivity was 1.4 kg/$m^3$ for the baseline. The potential rice yield was projected to increase by 23 % (2020s), 55 % (2050s), and 98 % (2080s), respectively, by the increased photosynthesis along with the $CO_2$ concentration increases. The water productivity was projected to increase by 19 % (2020s), 44 % (2050s), and 75 % (2080s), respectively.

Assessment on the Productivity of Mytilus galloprovincialis on the Mussel Culture Ground in Jinhae Bay (진해만 담치 양식장내 지중해담치의 생산력 평가)

  • Park, Heung-Sik;Yi, Soon-Kil;Paik, Sang-Gyu
    • The Korean Journal of Malacology
    • /
    • v.20 no.1
    • /
    • pp.45-53
    • /
    • 2004
  • This study have conducted to calibrate the productivities on the mussel (Mytilus galloprovincialis) cultures in Jinhae Bay. Annual water temperature, salinity and dissolved oxygen have varied to 7.2-$25.9^{\circ}C$, 32.9-34.0 psu, 7.9-8.7 mg/l, respectively. In April, the smallest size of spat, 3.3 mm in shell length, have recruited, and 82.5 mm have recorded to the maximum. In summer, variations of growing up between individuals showed both shell length and weights at same cohort. Annual production at 2 m, 5 m, 8 m depth calculated to 10.91, 10.85 and 9.19 gWWt/ind./yr, respectively. Mussel cultivated in the upper part of the water column (two meter depth) were significantly longer and heavier than those in lower part (eight meter depth). After the recruitment, monthly production showed gradual increment at all positions during summer. As results, annual production of mussel cultivated seemed to be controlled by conditions of growing up in summer. Based on the productivities calculated to this study, the total annual production of the mussel cultivated in Jinhae Bay have estimated about 196 ton/ha/yr.

  • PDF

Overfishing and recent risk for collapse of fishery in coastal Mediterranean lagoon ecosystem (Karavasta lagoon, southeastern Adriatic sea)

  • Spase Shumka;Yukio Nagahama;Sarjmir Hoxha;Koji Asano
    • Fisheries and Aquatic Sciences
    • /
    • v.26 no.4
    • /
    • pp.294-303
    • /
    • 2023
  • Beside that the fish species and their sub-populations are highly important as a keystone species in the coastal and marine ecosystem, there are very few studies on their presence, distribution and temporal variations within and around the lagoon ecosystems in Albania. This paper provides an updated review on the life cycle, fishery, exploitation state and management of the main species that are subject of commercial fishing in the Karavasta lagoon, southeastern Adriatic coast of Albania. Due to the fact that lagoons represent a continuum between continental and marine aquatic ecosystems they play a crucial role in species life cycles. Further on in the circumstances of rapid utilizations and environmental changes, anomalies in salinity and temperatures, accelerated anthropogenic influences their rate of vulnerability is highly increased. Following the requirements of the Water Framework Directive, transitional water, coastal lagoons and estuaries there is a need for urgent monitoring and management approaches. The commercial species include: European eel (Anguilla anguilla), species of Family Mugilidae (Mugil cephalus, Liza ramada, Liza salienes and Chelon labrosus), Seabream (Sparus aurata), Seabass (Dincentrarchus labrax), etc. Fish productivity is oscillating from maximum value of 61.95 kg/ha is recorded in period of 1975-80 and lower value of 31 kg/ha in year 2020. Our study highlights importance of fish and fishery long-term monitoring, and contributes to understand the driving factors in productivity, migration patterns and species ecology in the vital coastal ecosystems.

Nutrient Depletion and Primary Productivity in the Marginal Ice Zone of the Northwestern Weddell Sea During Austral Summer

  • Kang, Sung-Ho;Chung, Kyung-Ho;Kim, Dong-Yup;Park, Byong-Kwon;Kim, Dong-Seon
    • Journal of the korean society of oceanography
    • /
    • v.35 no.1
    • /
    • pp.34-45
    • /
    • 2000
  • Spatial distributions of phytoplankton biomass and nutrients were examined to investigate the magnitude of phytoplankton blooms along the marginal ice zone (MIZ) in the northwestern Weddell Sea during austral summer of 1995. High phytoplankton biomass was associated with the MIZ in the study area. Vertical stability induced by meltwater appears to be the most important factor controlling phytoplankton biomass distribution. Nitrate concentrations are significantly depleted within the upper water column at the phytoplankton biomass maximum. The time required to attain the observed nutrient depletion was calculated from phytoplankton biomass and nitrate depletion, which ranges from 27 to 68 days in transect 4 and from 33 to 145 days in transect 3. Phytoplankton production was also calculated from nitrate depletion and time-scales of nitrate depletion, which varies from 272 to 1752 mg C m$^{-2}$ day$^{-1}$ in transect 4 and from 327 to 2648 mg C m$^{-2}$ day$^{-1}$ in transect 3. In the Southern Ocean where primary productivity shows large temporal and spatial variations, the productivity measurement from nutrient depletion can provide an average rate of primary production during phytoplankton bloom.

  • PDF

Big Data Analysis on Oyster Growth and FLUPSY Environment (개체굴 성장 데이터와 양식 FLUPSY 환경 데이터의 빅 데이터 분석)

  • Yoo, Hyun-Joo;Zhang, Sung-Uk;Jung, Sun-Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.7
    • /
    • pp.106-111
    • /
    • 2020
  • In the era of the fourth industrial revolution, the application of big data analysis technology is crucial in various industries. In this regard, considerable research is necessary to improve aquafarming productivity, particularly in fish culture, which is one of the primary industries in the world. In this study, a sample experiment using a flop was conducted to improve oyster productivity in fish farms, and a flush was installed in an environment similar to aquaculture farms. Thereafter, the temperature data of the water environment where the formation of burrows considerably improved were collected; the growth rate of burrow seeds was also measured. The gathered experimental data were examined by time series data analysis. Finally, a system that visualizes the analysis results based on big data is proposed. In accord with the results of this study, it is expected that more advanced research on the productivity improvement of oyster aquafarming will be performed.