• 제목/요약/키워드: water network

검색결과 2,040건 처리시간 0.031초

수처리 계측제어망 Ad-hoc 적용시 데이터 신뢰성 확보를 위한 통신 프로토콜 제안 (The Communication protocol proposal at Ad-hoc for Water-Treatment)

  • 유철;서강도;최홍열;홍성택;지유철
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2013년도 추계학술대회
    • /
    • pp.984-987
    • /
    • 2013
  • 수처리 계측제어 시스템에서 네트워크의 재난대비나 유선망에 대한 백업개념 등으로 Ad-hoc 통신망 구축시 각 노드간의 송수신 데이터에 대한 높은 수준의 신뢰성과 보안성이 확보 되어야 한다. 이에 대해 일정 규모의 시설물이 집중된 폐쇄적 수처리 시설물의 FA망에 대한 Ad-hoc 통신망 구축시 일반적인 통신 프로토콜을 적용하기 보다는 사회기반 공공 설비인 수처리 시스템의 특성과 고정밀 산업플랜트와 같은 시간제약성을 고려하여, ZRP를 이용한 H-ARQ와 공정제어 명령 통신 프레임의 OTP를 활용한 별도의 특정 프로토콜을 적용함으로써 시설물 운영의 신뢰성과 보안성을 확보하고자 한다.

  • PDF

An Optimal Design of Paddy Irrigation Water Distribution System

  • Ahn, Tae-Jin;Park, Jung-Eung
    • Korean Journal of Hydrosciences
    • /
    • 제6권
    • /
    • pp.107-118
    • /
    • 1995
  • The water distribution system problem consists of finding a minimum cost system design subject to hydraulic and operation constraints. The design of new branchin network in a paddy irrigation system is presented here. The program based on the linear programming formulation is aimed at finding the optimal economical combination of two main factors : the capital cost of pipe network and the energy cost. Two loading conditions and booster pumps for design of pipe network are considered to obtain the least cost design.

  • PDF

태백권 배수관망 개량사업의 비용효과분석 최적화 모델 연구 (A Study on Cost Benefit Analysis Optimization Model for Water Distribution Network Rehabilitation Project of Taebaek Region)

  • 김태곤;최태호;김경필;구자용
    • 상하수도학회지
    • /
    • 제29권3호
    • /
    • pp.395-406
    • /
    • 2015
  • This research carried out an analysis on input cost and leakage reduction effect by leakage reduction method, focusing on the project for establishing an optimal water pipe network management system in the Taebaek region, which has been executed annually since 2009. Based on the result, optimal cost-benefit analysis models for water distribution network rehabilitation project were developed using DEA(data envelopment analysis) and multiple regression analysis, which have been widely utilized for efficiency analysis in public and other projects. DEA and multiple regression analysis were carried out by applying 4 analytical methods involving different ratios and costs. The result showed that the models involving the analytical methods 2 and 4 were of low significance (which therefore were excluded), and only the models involving the analytical methods 1 and 3 were suitable. From the result it was judged that the leakage management method to be executed with the highest priority for the improvement of revenue water ratio was installation of pressure reduction valve, followed by replacement of water distribution pipe, replacement of water supply pipe, and then leakage detection and repair; and that the execution of leakage management methods in this order would be most economical. In addition, replacement of water meter was also shown to be necessary in case there were a large number of defective water meters.

천해환경에 의해 변형된 시변신호의 신경망을 통한 식별 (Neural Network Based Classification of Time-Varying Signals Distorted by Shallow Water Environment)

  • Na, Young-Nam;Shim, Tae-Bo;Chang, Duck-Hong;Kim, Chun-Duck
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1997년도 영남지회 학술발표회 논문집 Acoustic Society of Korean Youngnam Chapter Symposium Proceedings
    • /
    • pp.27-34
    • /
    • 1997
  • In this study , we tried to test the classification performance of a neural netow and thereby to examine its applicability to the signals distorted by a shallow water einvironment . We conducted an acoustic experiment iin a shallow sea near Pohang, Korea in which water depth is about 60m. The signals, on which the network has been tested, is ilinear frequency modulated ones centered on one of the frequencies, 200, 400, 600 and 800 Hz, each being swept up or down with bandwidth 100Hz. we considered two transforms, STFT(short-time Fourier transform) and PWVD (pseudo Wigner-Ville distribution), form which power spectra were derived. The training signals were simulated using an acoutic model based on the Fourier synthesis scheme. When the network has been trained on the measured signals of center frequency 600Hz,it gave a little better results than that trained onthe simulated . With the center frequencies varied, the overall performance reached over 90% except one case of center frequency 800Hz. With the feature extraction techniques(STFT and PWVD) varied,the network showed performance comparable to each other . In conclusion , the signals which have been simulated with water depth were successully applied to training a neural network, and the trained network performed well in classifying the signals distorted by a surrounding environment and corrupted by noise.

  • PDF

관조도와 난류를 고려한 부정류와 정상류 해석의 적용 연구 (Transient and Steady State Analysis considering Roughness and Reynolds Number in Water Distribution Systems)

  • 김현수;송용석;김상현
    • 상하수도학회지
    • /
    • 제20권3호
    • /
    • pp.357-366
    • /
    • 2006
  • In order to compute pressure variation for a water distribution system, an expression for the friction factor as a function of Reynolds number and the relative roughness needs to be properly incorporated in computational algorithm. Considering Moody s friction variation, Developed Unsteady Network Analyzer (UNA) has been modified to match computational results with EPANET 2.0. Substantial improvement can be found in the application of Improved UNA to both an hypothetical pipeline network and a real system located in Ulsan City. Random number generator is employed to represent the uncertainty of water use in real pipeline network. Comparisons of application between EPANET 2.0 and improved UNA 2.0 indicate advantages and potentials of this approach.

고분자 연료전지의 다공성층 내에서의 액상수분 이동에 관한 공극-네트워크 해석 연구 (Pore-network Study of Liquid Water Transport through Multiple Gas Diffusion Medium in PEMFCs)

  • 강정호;이상건;남진현;김찬중
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.46-53
    • /
    • 2011
  • Water is continuously produced in polymer electrolyte membrane fuel cell (PEMFC), and is transported and exhausted through polymer electrolyte membrane (PEM), catalyst layer (CL), microporous layer (MPL), and gas diffusion layer (GDL). The low operation temperatures of PEMFC lead to the condensation of water, and the condensed water hinders the transport of reactants in porous layers (MPL and GDL). Thus, water flooding is currently one of hot issues that should be solved to achieve higher performance of PEMFC. This research aims to study liquid water transport in porous layers of PEMFC by using pore-network model, while the microscale pore structure and hydrophilic/hydrophobic surface properties of GDL and MPL were fully considered.

  • PDF

다목적댐 유입량 예측을 위한 Recurrent Neural Network 모형의 적용 및 평가 (Application of recurrent neural network for inflow prediction into multi-purpose dam basin)

  • 박명기;윤영석;이현호;김주환
    • 한국수자원학회논문집
    • /
    • 제51권12호
    • /
    • pp.1217-1227
    • /
    • 2018
  • 본 연구에서는 순환신경망을 이용한 댐 유입량 예측모형의 적용성 검토를 목적으로 하고 있으며, 이를 위해 소양강댐 유역 및 충주댐 유역을 대상으로 그간 댐 운영을 통해 축적된 기상 및 수문 빅데이터를 활용하여 인공신경망 모형과 엘만 순환신경망 모형을 구축하였다. 모형의 학습과 예측을 위하여 유역별 유입량, 강우량, 기온, 일조시간, 풍속자료가 입력자료로 사용되었고 10일간 일별 댐유입량 자료가 모델의 출력자료로 구조화 하여 학습을 진행한 후 검증을 목적으로 2016년 7월 ~ 2018년 6월까지 2개년에 대한 댐 유입량 예측을 수행하였다. 학습된 모형의 유입량 예측 결과를 비교분석한 결과, 소양강댐 유역에서는 인공신경망 모형과 순환신경망 모형 간 예측성능은 큰 차이를 보이지 않았으며, 충주댐 유역에서는 순환신경망 모형의 예측 결과가 인공신경망 모형에 비해 비교적 우수한 성능을 보임에 따라 엘만 순환신경망을 이용하여 댐 유입량 예측모형을 구축할 경우 예측성능은 기존의 인공신경망 모형과 비슷하거나 다소 우수할 것으로 판단된다. 또한 엘만 순환신경망은 갈수기 댐 유입량 예측에 있어서 인공신경망에 비해 예측결과의 재현성이 우수한 것으로 나타났으며, 엘만 순환신경망 학습에 있어 다중 은닉층 구조가 단일 은닉층 구조보다 예측 성능 향상에 효과적인 것으로 분석되었다.

Identification of Critical Elements in Water Distribution Networks using Resilience Index Measurement

  • Marlim, Malvin Samuel;Jeong, Gimoon;Kang, Doosun
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2019년도 학술발표회
    • /
    • pp.162-162
    • /
    • 2019
  • Water Distribution Network (WDN) is a critical infrastructure to be maintained ensuring proper water supply to wide-spread consumers. The WDN consists of pipes, valves, pumps and tanks, and these elements interact each other to provide adequate system performance. If elements fail by internal or external interruptions, it may result in adverse impact to water service with different degree depending on the failed element. To determine an appropriate maintenance priority, the critical elements need to be identified and mapped in the network. In order to identify and prioritize the critical elements in WDN, an element-based simulation approach is proposed, in which all the elements composing the WDN are reviewed one at a time. The element-based criticality is measured using several resilience indexes that are newly developed in this study. The proposed resilience indexes are used to quantify the impacts of element failure to water service degradation. Here, three resilience indexes are developed, such as User Demand Severity, Economic Value Loss and Water Age Degradation, each of which intends to measure different aspects of consequences, such as social, economic, and water quality, respectively. For demonstration, the proposed approach is applied to a benchmark water network to identify and prioritize the critical elements.

  • PDF

Sequential optimization for pressure management in water distribution networks

  • Malvin S. Marlim;Doosun Kang
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.169-169
    • /
    • 2023
  • Most distributed water is not used effectively due to water loss occurring in pipe networks. These water losses are caused by leakage, typically due to high water pressure to ensure adequate water supply. High water pressure can cause the pipe to burst or develop leaks over time, particularly in an aging network. In order to reduce the amount of leakage and ensure proper water distribution, it is important to apply pressure management. Pressure management aims to maintain a steady and uniform pressure level throughout the network, which can be achieved through various operational schemes. The schemes include: (1) installing a variable speed pump (VSP), (2) introducing district metered area (DMA), and (3) operating pressure-reducing valves (PRV). Applying these approaches requires consideration of various hydraulic, economic, and environmental aspects. Due to the different functions of these approaches and related components, an all-together optimization of these schemes is a complicated task. In order to reduce the optimization complexity, this study recommends a sequential optimization method. With three network operation schemes considered (i.e., VSP, DMA, and PRV), the method explores all the possible combinations of pressure management paths. Through sequential optimization, the best pressure management path can be determined using a multiple-criteria decision analysis (MCDA) to weigh in factors of cost savings, investment, pressure uniformity, and CO2 emissions. Additionally, the contribution of each scheme to pressure management was also described in the application results.

  • PDF