• Title/Summary/Keyword: water network

Search Result 2,013, Processing Time 0.028 seconds

Optimization of Water-Reusing Network among the Industries in an Eco-Industrial Park Complex Using Water Pinch Technology (워터핀치기술을 이용한 생태산업단지 내 기업간 용수 재이용망 최적화)

  • Kim, Young-Soo;Kim, Hyun-Joo;Lee, In-Beum;Yoo, Chang-Kyoo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.11
    • /
    • pp.1165-1173
    • /
    • 2008
  • An water-reuse network design has drawn attention as a systematic method of reducing fresh water usage and increasing water-using efficiency. The final goal of an eco-industrial park(EIP) is accomplishing industrial sustainability and constructing water-reuse network can be a solution. When designing water-reuse network connecting various processes which consume water, the water pinch technology can be used frequently, since it simultaneously minimize freshwater usage and wastewater discharge. In this research water pinch technology is applied to develop an effective water-reuse network in an EIP. Three scenarios based on different reusing strategies were developed. The results show that the final water-reuse network can reduce the total fresh water usage more than 30%, while the water expenses decrease by 20%. It can be concluded that water pinch technology is an effective tool to optimize water-reuse network among different industrial facilities.

The developing optimum maintenance cost model for water pipe network by waterworks business characteristics (수도사업자의 경영환경을 고려한 상수도관망 적정 유지관리비 산정 모델 개발 연구)

  • Kim, Kibum;Kim, Changhwan;Shin, Hwisu;Seo, Jeewon;Hyung, Jinseok;Koo, Jayong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.1
    • /
    • pp.51-62
    • /
    • 2017
  • For the asset management of a water pipe network, it would be necessary to understand the extent of the maintenance cost required for the water pipe network for the future. This study would develop a method to draw the optimum cost required for the maintenance of the water pipe network in waterworks facilities to maintain the aim revenue water ratio and to achieve the target revenue water ratio, considering the water service providers' waterworks condition and revenue water ratio comprehensively. This study conducted a survey with 96 water service providers as of the early 2015 and developed models to estimate the optimum maintenance cost of the water pipe network, considering the characteristics of the water service providers. Since the correlation coefficient of all the developed models was higher than 0.95, it turned out that it had significant reliability, which was statistically significant. As a result of applying the developed models to the actual water service providers, it was drawn that increasing revenue water ratio to more than a certain level can reduce the maintenance cost of the water pipe network by a great deal. In other words, it is judged that it would be the most efficient to secure the reliability of waterworks management by increasing the short-term revenue water ratio to more than a certain level and gradually increase the revenue water ratio from the long-term perspective. It is expected that the proposed methodology proposed in this study and the results of the study will be used as a basic research for planning the maintenance of water pipe network or establishing a plan for waterworks facilities asset management.

A comprehensive approach to flow-based seismic risk analysis of water transmission network

  • Yoon, Sungsik;Lee, Young-Joo;Jung, Hyung-Jo
    • Structural Engineering and Mechanics
    • /
    • v.73 no.3
    • /
    • pp.339-351
    • /
    • 2020
  • Earthquakes are natural disasters that cause serious social disruptions and economic losses. In particular, they have a significant impact on critical lifeline infrastructure such as urban water transmission networks. Therefore, it is important to predict network performance and provide an alternative that minimizes the damage by considering the factors affecting lifeline structures. This paper proposes a probabilistic reliability approach for post-hazard flow analysis of a water transmission network according to earthquake magnitude, pipeline deterioration, and interdependency between pumping plants and 154 kV substations. The model is composed of the following three phases: (1) generation of input ground motion considering spatial correlation, (2) updating the revised nodal demands, and (3) calculation of available nodal demands. Accordingly, a computer code was developed to perform the hydraulic analysis and numerical modelling of water facilities. For numerical simulation, an actual water transmission network was considered and the epicenter was determined from historical earthquake data. To evaluate the network performance, flow-based performance indicators such as system serviceability, nodal serviceability, and mean normal status rate were introduced. The results from the proposed approach quantitatively show that the water network is significantly affected by not only the magnitude of the earthquake but the interdependency and pipeline deterioration.

Water Distribution Network Partitioning Based on Community Detection Algorithm and Multiple-Criteria Decision Analysis

  • Bui, Xuan-Khoa;Kang, Doosun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.115-115
    • /
    • 2020
  • Water network partitioning (WNP) is an initiative technique to divide the original water distribution network (WDN) into several sub-networks with only sparse connections between them called, District Metered Areas (DMAs). Operating and managing (O&M) WDN through DMAs is bringing many advantages, such as quantification and detection of water leakage, uniform pressure management, isolation from chemical contamination. The research of WNP recently has been highlighted by applying different methods for dividing a network into a specified number of DMAs. However, it is an open question on how to determine the optimal number of DMAs for a given network. In this study, we present a method to divide an original WDN into DMAs (called Clustering) based on community structure algorithm for auto-creation of suitable DMAs. To that aim, many hydraulic properties are taken into consideration to form the appropriate DMAs, in which each DMA is controlled as uniform as possible in terms of pressure, elevation, and water demand. In a second phase, called Sectorization, the flow meters and control valves are optimally placed to divide the DMAs, while minimizing the pressure reduction. To comprehensively evaluate the WNP performance and determine optimal number of DMAs for given WDN, we apply the framework of multiple-criteria decision analysis. The proposed method is demonstrated using a real-life benchmark network and obtained permissible results. The approach is a decision-support scheme for water utilities to make optimal decisions when designing the DMAs of their WDNs.

  • PDF

An Investigation of the Relationship between Revenue Water Ratio and the Operating and Maintenance Cost of Water Supply Network (상수관망 유수율과 유지관리 비용의 관계 분석)

  • Kim, Jaehee;Yoo, Kwangtae;Jun, Hwandon;Jang, Jaesun
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.2
    • /
    • pp.202-212
    • /
    • 2012
  • Due to the deterioration of water supply network and the deficiency of raw water, the water utility of local governments have performed various projects to improve their revenue water ratio. However, it is very difficult to estimate the cost for maintaining the revenue water ratio at higher level after completing the project, because local governments have different conditions affecting the operating and maintenance cost of water supply network. The purpose of this study is to present a procedure to estimate the operating and maintenance cost required to maintain the target revenue water ratio of the water supply network. For this purpose, we estimated the cost used only for operation and maintenance of water supply network of 164 local governments with the aid of K-Mean Clustering Analysis and the data from 40 representative local governments. Then, the regression analysis was performed to find relationship between revenue water ratio and the operating and maintenance cost with two different data sets generated by two classification methods; the first method classifies the local governments by means of k-means clustering, and the other classifies the local governments according to the index standardized by the operating and maintenance cost per unit length of water mains per revenue water ratio. The results shows that the method based on the index standardized by the cost and revenue water ratio of each government produces more reliable results for finding regression equations between revenue water ratio and the operating and maintenance cost only for water supply network. The estimated regression equations for each group can be used to estimate the cost required to keep the target revenue water ratio of the local government.

A network approach to local water management for building collaborative water governance: the case of Jeju special self-governing province (지방자치단체의 협력적 물 거버넌스 구축을 위한 네트워크 분석: 제주특별자치도의 물관리 사례를 중심으로)

  • Kim, Boram;Yang, Wonseok;Ahn, Jongho
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.9
    • /
    • pp.671-680
    • /
    • 2020
  • This study aims to explore structural properties and central actors of the local water policy system through a network approach, and to suggest practical implications for establishing collaborative water governance at the local level. Especially, this study conducts a social network analysis to empirically analyze the actors' roles and relationships of water management in Jeju Special Self-Governing Province and represent them with sociograms. In this study, the local water management network is divided into two dimensions: official work network, public-private policy network based on information-sharing and consultation. Also, the networks are divided into a whole network and two sectoral networks(water-use/water-quality). This study found some meaningful differences of structural properties and central actors not only in the official work networks and the policy networks but also in the water-use networks and the water-quality networks. Thus, public managers should diagnose and manage the relational properties among multiple stakeholders in local water sector through a network perspective. In particular, (1)co-operation between the administrative departments responsible for water-use and water-quality, and (2)information-sharing and consultation among public and private stakeholders should be improved to establish collaborative local water governance.

Predictive Modeling of River Water Quality Factors Using Artificial Neural Network Technique - Focusing on BOD and DO- (인공신경망기법을 이용한 하천수질인자의 예측모델링 - BOD와 DO를 중심으로-)

  • 조현경
    • Journal of Environmental Science International
    • /
    • v.9 no.6
    • /
    • pp.455-462
    • /
    • 2000
  • This study aims at the development of the model for a forecasting of water quality in river basins using artificial neural network technique. Water quality by Artificial Neural Network Model forecasted and compared with observed values at the Sangju q and Dalsung stations in Nakdong river basin. For it, a multi-layer neural network was constructed to forecast river water quality. The neural network learns continuous-valued input and output data. Input data was selected as BOD, CO discharge and precipitation. As a result, it showed that method III of three methods was suitable more han other methods by statistical test(ME, MSE, Bias and VER). Therefore, it showed that Artificial Neural Network Model was suitable for forecasting river water quality.

  • PDF

Prediction of Daily Water Supply Using Neuro Genetic Hybrid Model (뉴로 유전자 결합모형을 이용한 상수도 1일 급수량 예측)

  • Rhee, Kyoung-Hoon;Kang, Il-Hwan;Moon, Byoung-Seok;Park, Jin-Geum
    • Journal of Environmental Impact Assessment
    • /
    • v.14 no.4
    • /
    • pp.157-164
    • /
    • 2005
  • Existing models that predict of Daily water supply include statistical models and neural network model. The neural network model was more effective than the statistical models. Only neural network model, which predict of Daily water supply, is focused on estimation of the operational control. Neural network model takes long learning time and gets into local minimum. This study proposes Neuro Genetic hybrid model which a combination of genetic algorithm and neural network. Hybrid model makes up for neural network's shortcomings. In this study, the amount of supply, the mean temperature and the population of the area supplied with water are use for neural network's learning patterns for prediction. RMSE(Root Mean Square Error) is used for a MOE(Measure Of Effectiveness). The comparison of the two models showed that the predicting capability of Hybrid model is more effective than that of neural network model. The proposed hybrid model is able to predict of Daily water, thus it can apply real time estimation of operational control of water works and water drain pipes. Proposed models include accidental cases such as a suspension of water supply. The maximum error rate between the estimation of the model and the actual measurement was 11.81% and the average error was lower than 1.76%. The model is expected to be a real-time estimation of the operational control of water works and water/drain pipes.

Prioritization decision for hazard ranking of water distribution network by cluster using the Entropy-TOPSIS method (Entropy-TOPSIS 기법을 활용한 군집별 상수도관망 위험도 관리순위 결정)

  • Park, Haekeum;Kim, Kibum;Hyung, Jinseok;Kim, Taehyeon;Koo, Jayong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.6
    • /
    • pp.517-531
    • /
    • 2021
  • The water supply facilities of Korea have achieved a rapid growth, along with the other social infrastructures consisting a city, due to the phenomenon of urbanization according to economic development. Meanwhile, the level of water supply service demanded by consumer is also steadily getting higher in keeping with economic growth. However, as an adverse effect of rapid growth, the quantity of aged water supply pipes are increasing rapidly, Bursts caused by pipe aging brought about an enormous economic loss of about 6,161 billion won as of 2019. These problems are not only worsening water supply management, also increasing the regional gap in water supply services. The purpose of this study is to classify hazard evaluation indicators and to rank the water distribution network hazard by cluster using the TOPSIS method. In conclusion, in this study, the entropy-based multi-criteria decision-making methods was applied to rank the hazard management of the water distribution network, and the hazard management ranking for each cluster according to the water supply conditions of the county-level municipalities was determined according to the evaluation indicators of water outage, water leakage, and pipe aging. As such, the hazard ranking method proposed in this study can consider various factors that can impede the tap water supply service in the water distribution network from a macroscopic point of view, and it can be reflected in evaluating the degree of hazard management of the water distribution network from a preventive point of view. Also, it can be utilized in the implementation of the maintenance plan and water distribution network management project considering the equity of water supply service and the stability of service supply.

Dynamic Configuration and Operation of District Metered Areas in Water Distribution Networks

  • Bui, Xuan-Khoa;Kang, Doosun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.147-147
    • /
    • 2021
  • A partition of water distribution network (WDN) into district metered areas (DMAs) brings the efficiency and efficacy for water network operation and management (O&M), especially in monitoring pressure and leakage. Traditionally, the DMA configurations (i.e., number, shape, and size of DMAs) are permanent and cannot be changed occasionally. This leads to changes in water quality and reduced network redundancy lowering network resilience against abnormal conditions such as water demand variability and mechanical failures. This study proposes a framework to automatically divide a WDN into dynamic DMA configurations, in which the DMA layouts can self-adapt in response to abnormal scenarios. To that aim, a complex graph theory is adopted to sectorize a WDN into multiscale DMA layouts. Then, different failure-based scenarios are investigated on the existing DMA layouts. Here, an optimization-based model is proposed to convert existing DMA layouts into dynamic layouts by considering existing valves and possibly placing new valves. The objective is to minimize the alteration of flow paths (i.e., flow direction and velocity in the pipes) while preserving the hydraulic performance of the network. The proposed method is tested on a real complex WDN for demonstration and validation of the approach.

  • PDF