• Title/Summary/Keyword: water mass distribution

Search Result 406, Processing Time 0.025 seconds

Distribution of Air-Water Two-Phase Flow in a Header of Aluminum Flat Tube Evaporator (알루미늄 평판관 증발기 헤더 내 공기-물 2상류 분지 실험)

  • Kim Nae-Hyun;Shin Tae-Ryong;Sim Yong-Sup
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.1
    • /
    • pp.55-65
    • /
    • 2006
  • The air and water flow distribution are experimentally studied for a round header - flat tube geometry simulating a parallel flow heat exchanger. The number of branch flat tube is thirty. The effects of tube outlet direction, tube protrusion depth as well as mass flux, and quality are investigated. The flow at the header inlet is identified as annular. For the downward flow configuration, the water flow distribution is significantly affected by the tube protrusion depth. For flush-mounted configuration, most of the water flows through frontal part of the header. As the protrusion depth increases, more water is forced to the rear part of the header. The effect of mass flux or quality is qualitatively the same as that of the protrusion depth. Increase of the mass flux or quality forces the water to rear part of the header. For the upward flow configuration, however, most of the water flows through rear part of the header. The protrusion depth, mass flux, or quality does not significantly alter the flow pattern. Possible explanations are provided based on the flow visualization results. Negligible difference on the water flow distribution was observed between the parallel and the reverse flow configuration.

Distribution of Air-Water Two-Phase Flow in a Flat Tube Heat Exchanger (평판관 열교환기 내 공기-물 2상류 분지)

  • Kim, Nae-Hyun;Park, Tae-Gyun;Han, Sung-Pil;Shin, Tae-Ryong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.9
    • /
    • pp.687-697
    • /
    • 2006
  • The air and water flow distribution are experimentally studied for a heat exchanger composed of round headers and 10 flat tubes. The effects of tube protrusion depth as well as mass flux, and quality are investigated, and the results are compared with the previous 30 channel results. The flow at the header inlet is annular. For the downward flow configuration, the water flow distribution is significantly affected by the tube protrusion depth. For flush-mounted geometry, significant portion of the water flows through frontal part of the header. As the protrusion depth increases, more water is forced to the rear part of the header. The effect of mass flux or quality is qualitatively the same as that of the protrusion depth. Increase of the mass flux or quality forces the water to rear part of the header. For the upward flow configuration, different from the downward configuration, significant portion of the water flows through the rear part of the header. The effect of the protrusion depth is the same as that of the downward flow. As the protrusion depth increases, more water is forced to the rear part of the header. However, the effect of mass flux or quality is opposite to the downward flow case. As the mass flux or quality increases, more water flows through the frontal part of the header. Compared with the previous thirty channel configuration, the present ten channel configuration yields better flow distribution. Possible explanation is provided from the flow visualization results.

Using Tintinnid Distribution for Monitoring Water Mass Changes in the Northern East China Sea (북부 동중국해 수괴 변화 감시를 위한 유종섬모류 분포 적용)

  • Kim, Young-Ok;Noh, Jae-Hoon;Lee, Tae-Hee;Jang, Pung-Guk;Ju, Se-Jong;Choi, Dong-Lim
    • Ocean and Polar Research
    • /
    • v.34 no.2
    • /
    • pp.219-228
    • /
    • 2012
  • Tintinnid species distribution has been monitored in the northern East China Sea (ECS) in the summer of 2006 through 2011. This is used to understand the water mass movements in the northern ECS. The warm oceanic tintinnid species had largely spread in 2007 in the area, indicating that there was greater warm water extension into the northern ECS. However the extension of neritic water within the Changjiang diluted water mass has strengthened in 2008 and 2010 because the neritic species distribution had relatively grown in both years. These annual results based on the biological indicators of tintinnid species are well matched with the salinity change in the area. The warm oceanic species, Dadayiella ganymedes had frequently occurred over the study years and had shown a significant relationship with the salinity change. This is valuable as a key stone species for monitoring the intrusion of the Kuroshio within the northern ECS. Information from tintinnid biological indicators can support physical oceanography data to confirm ambiguous water mass properties.

Characterization of Chemical Composition and Size Distribution of Atmospheric Aerosols by Low-Pressure Impactor (저압 임팩터를 이용한 대기 에어로졸 입자의 입경분포 측정과 화학조성 자료의 해석)

  • 박정호;최금찬
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.13 no.6
    • /
    • pp.475-486
    • /
    • 1997
  • The characteristics of atmospheric aerosols were investigated as a function of particle size and water solubility. The atmospheric aerosols were sampled with classifying into 12 size ranges by the use of Andersen low-pressure impactor. Collected aerosol particles were extracted by ultrapure water and filtered to be separated into water-soluble and insoluble components. The concentrations 12 elements in both components were determined by PIXE analysis. And the concentrations of 8 ions in the soluble component were analyzed by ion chromatography. In general, the mass size distribution of particulate matter was represented as a bimodal distribution. The mass size distributions of S$(SO_4^{2-}), K(K^+), Zn and NH_4^+$ skewed to the smaller size range and those of Si, Ca$(Ca^{2+}), Fe, Na^+ and Mg^{2+}$ skewed to the larger size range. They had roughly one peak in the fine and coarse particle region,respectively. On the other hand, the mass size distribution of Ti, Mn, Ni, Cu, $Cl^- and NO_3^-$ were represented as the bimodal distribution. Fe and Si in the aerosol particles extracted into pure water are existing in high insoluble state. Conversely, almost the whole of S is dissolved in water.

  • PDF

Daily Concentration Measurements of Water-soluble Inorganic Ions in the Atmospheric Fine Particulate for Respiratory Deposition Region (호흡기 침착부위에 따른 미세먼지 중 수용성 이온성분의 일별 농도 측정)

  • Kang, Gong-Unn;Lee, Sang-Bok
    • Journal of Environmental Health Sciences
    • /
    • v.31 no.5 s.86
    • /
    • pp.387-397
    • /
    • 2005
  • In oder to understand the deposition possibility of water-soluble inorganic ions in the atmospheric fine particulates for the human respiratory tract, the mass size distribution of ion species was measured using an Anderson sampler in the Iksan during fall, 2004. Samples were analyzed for major water-soluble ions using Dionex DX-100 ion chromatograph. The size distribution of water-soluble inorganic ions in the atmospheric particulates appeared bimodal distribution, which were divided around $1-2{\mu}m$ into two groups. Mass site distribution of total ion in the coarse mode was found to be almost similar level during the sampling period, but fluctuations of mass size distribution in the fine mode were observed. Considering the mass size distribution of total ion concentrations for the respiratory deposition region, it was found that about 77.1% of total tons could be deposited in the alveolar region, and which dominated the daily variation of total ion concentrations. The concentration of total ions, which could be deposited in both the head region and the tracheobronchial region, was $3.95{\mu}g/m^3$, whereas that in the alveolar rerion was $13.28{\mu}g/m^3$. Dominant ions which could be deposited in the alveolar region were ${NO_3}{^-},\;{SO_4}^{2-}\;and\;{NH_4{^+}$, accounting for about 40%, 27% and 22% of the total ions, respectively. Although $K^+$ was approximately 3% of total ions, it was shown that most of this could be deposited in the alveolar region due to its high fraction of small size distribution originated from anthropogenic source of biomass burning. The presence of these ions in the fine mode may be of public health significance as they are very biologically harmful to health and have a high probability of being deposited in human lung tissue.

A Note on Approximation of Bottled Water Consumption Distribution: A Mixture Model (혼합모형을 이용한 생수소비 분포의 근사화에 대한 소고(小考))

  • Yoo, Seung-Hoon
    • Environmental and Resource Economics Review
    • /
    • v.11 no.2
    • /
    • pp.321-333
    • /
    • 2002
  • Approximating bottled water consumption distribution is complicated by zero observations in the sample. To deal with the zero observations, a mixture model of bottled water consumption distributions is proposed and applied to allow a point mass at zero. The bottled water consumption distribution is specified as a mixture of two distributions, one with a point mass at zero and the other with full support on the positive half of the real line. The model is empirically verified for household bottled water consumption survey data. The mixture model can easily capture the common bimodality feature of the bottled water consumption distribution. In addition, when covariates were added to the model, it was found that the probability that a household has non-consumption significantly varies with some variables.

  • PDF

A Study on Vibration Characteristics in Water Tank Structures -Change of Aspect Ratio and Pressure Distribution- (접수 탱크 구조물의 진동특성에 관한 연구 - 종횡비 변화와 압력분포 -)

  • 배성용
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.6
    • /
    • pp.80-87
    • /
    • 2003
  • Tank structures in ships are in contact with various fluid. The vibration characteristics of those structures are strongly affected by the added mass due to containing fluid. It is important to predict vibration characteristics of tank structures, but it is difficult to do. That's because the interaction problem concerned with the free surface, the variation of water depth and stiffener is to be considered between the fluid and the structure. Many authors have studied vibration of rectangular tank structures containing water. Kito studied added mass effect of water in contact with thin elastic flat plates. Kim et al. studied flexural vibration of stiffened plates in contact with water. However, few researches on dynamic interaction tank walls with water are reported in the vibration of rectangular tanks recently. in the present report, the coupling effect of added mass of fluid and structural constraint between panels on each vibration mode changing breadth of elastic plate, and dynamic pressure distribution have investigated numerically and discussed.

Water Quality Characteristics Along Mid-western Coastal Area of Korea (한국 서해 중부 연안역의 수질환경 특성)

  • Lim, Dhong-Il;Kang, Mi-Ran;Jang, Pung-Guk;Kim, So-Young;Jung, Hoi-Soo;Kang, Yang-Soon;Kang, Young-Shil
    • Ocean and Polar Research
    • /
    • v.30 no.4
    • /
    • pp.379-399
    • /
    • 2008
  • Spatial-temporal variations in physiochemical water qualities (temperature, salinity, DO, SPM, POC and nutrients) of surface and bottom waters were investigated along the mid-western coastal area (Taean Peninsula to Gomso Bay) of Korea. Spatial distribution patterns of temperature and salinity were mostly controlled by the physical mixing process of freshwater from Geum River and/or Gyunggi Bay with nearby coastal water. A strong tidal front is formed off Taean Peninsula during spring and summer. Seasonal variations in nutrient concentrations, lower in spring and summer and higher in fall and winter, are primarily regulated by magnitude of phytoplankton occurrence rather than freshwater loadings into the bay. Based on seasonal and spatial variability of physicochemical parameters, water quality of the study area can be divided into four water masses; Gyunggi Bay-influenced Water Mass (GBWM), Geum River-influenced Water Mass (GRWM), Yellow Sea Bottom Cold Water Mass (YSBCWM) and Cheonsu Bay Water Mass (CBWM). Water quality of the GBWM (Taean Peninsula coastal area), which has relatively low salinity and high concentrations of nutrients, is strongly controlled by the Gyunggi Bay coastal water, which is under influence of the Han River freshwater. In this water mass, the mixed layer is always developed by strong tidal mixing. As a result, a tidal front is formed along the offshore boundary of the mixed layer. Such tidal fronts probably play an important role in the distribution of phytoplankton communities, SPM and nutrients. The GRWM, with low salinity and high nutrients, especially during the flood summer season, is closely related to physiochemical properties of the Geum River. During the flood season, nutrient-enriched Geum River water mass extends up to 60 km away from the river mouth, potentially causing serious environmental problems such as eutrophication and unusual and/or noxious algal blooms. Offshore (<$30{\sim}40m$ in water depth) of the study area, YSBCWM coupled with a strong thermocline can be identified in spring-summer periods, exhibiting abundant nutrients in association with low temperature and limited biological activity. During spring and summer, a tidal front is formed in a transition zone between the coastal water mass and bottom cold water mass in the Yellow Sea, resulting in intensified upwelling and thereby supplying abundant nutrients to the GBWM and GRWM. Such cold bottom water mass and tidal front formation seems to play an important role in controlling water quality and further regulating physical ecosystem processes along mid-western Korean coastal area.

Influence of fracture characters on flow distribution under different Reynold numbers

  • Wang, Jing;Li, Shu-Cai;Li, Li-Ping;Gao, Cheng-Lu
    • Geomechanics and Engineering
    • /
    • v.14 no.2
    • /
    • pp.187-193
    • /
    • 2018
  • Water inrush through the destruction of water resisting rock mass structure was divided into direct water inrush, key block water inrush and splitting water inrush. In the direct water inrush, the Reynolds numbers has a significant effect on the distribution of the water flow and vortex occurred in the large Reynolds numbers. The permeability coefficient of the fracture is much larger than the rock, and the difference is between 104 and 107 times. The traditional theory and methods are not considering the effect of inertia force. In the position of the cross fracture, the distribution of water flow can only be linearly distributed according to the fracture opening degree. With the increase of Reynolds number, the relationship between water flow distribution and fracture opening is studied by Semtex.

Groundwater inflow rate estimation considering excavation-induced permeability reduction in the vicinity of a tunnel (터널 굴착으로 인한 터널인접 절리암반 투수계수 감소를 고려한 터널 내 지하수 유입량 산정방법)

  • Moon, Joon-Shik
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.3
    • /
    • pp.333-344
    • /
    • 2013
  • This paper discussed about the effect of permeability reduction of the jointed rock mass in the vicinity of a tunnel which is one of the reasons making large difference between the estimated ground-water inflow rate and the measured value. Current practice assumes that the jointed rock mass around a tunnel is a homogeneous, isotropic porous medium with constant permeability. However, in actual condition the permeability of a jointed rock mass varies with the change of effective stress condition around a tunnel, and in turn effective stress condition is affected by the ground water flow in the jointed rock mass around the tunnel. In short time after tunnel excavation, large increase of effective tangential stress around a tunnel due to stress concentration and pore-water pressure drop, and consequently large joint closure followed by significant permeability reduction of jointed rock mass in the vicinity of a tunnel takes place. A significant pore-water pressure drop takes place across this ring zone in the vicinity of a tunnel, and the actual pore-water pressure distribution around a tunnel shows large difference from the value estimated by an analytical solution assuming the jointed rock mass around the tunnel as a homogeneous, isotropic medium. This paper presents the analytical solution estimating pore-water pressure distribution and ground-water inflow rate into a tunnel based on the concept of hydro-mechanically coupled behavior of a jointed rock mass and the solution is verified by numerical analysis.