• Title/Summary/Keyword: water level estimation

Search Result 405, Processing Time 0.027 seconds

Storage Estimation of Irrigation Reservoir by Water Balance Analysis (물수지 분석을 통한 관개용 저수지의 저수율 추정)

  • Choi, Jin-Kyu;Son, Jae-Gwon;Koo, Ja-Woong;Kim, Young-Ju
    • Journal of Korean Society of Rural Planning
    • /
    • v.9 no.4 s.21
    • /
    • pp.1-7
    • /
    • 2003
  • This study was conducted to seek the effective water management method of the irrigation reservoirs. Joongpyong reservoir was selected for the hydrologic monitoring, and investigated from May in 1999 to December in 2001. The water level and amount of outlet discharge were measured, the stage discharge equation as a rating curve was induced, and which were compared to the irrigation water requirements calculated by a daily simulation model. The water balance of Joongpyong reservoir was analyzed, mainly on the reservoir storage ratio during irrigation period. Comparing the observed storage and simulation data, the results of the simulation were well agreed with the measured data.

Application of CCTV Image and Semantic Segmentation Model for Water Level Estimation of Irrigation Channel (관개용수로 CCTV 이미지를 이용한 CNN 딥러닝 이미지 모델 적용)

  • Kim, Kwi-Hoon;Kim, Ma-Ga;Yoon, Pu-Reun;Bang, Je-Hong;Myoung, Woo-Ho;Choi, Jin-Yong;Choi, Gyu-Hoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.3
    • /
    • pp.63-73
    • /
    • 2022
  • A more accurate understanding of the irrigation water supply is necessary for efficient agricultural water management. Although we measure water levels in an irrigation canal using ultrasonic water level gauges, some errors occur due to malfunctions or the surrounding environment. This study aims to apply CNN (Convolutional Neural Network) Deep-learning-based image classification and segmentation models to the irrigation canal's CCTV (Closed-Circuit Television) images. The CCTV images were acquired from the irrigation canal of the agricultural reservoir in Cheorwon-gun, Gangwon-do. We used the ResNet-50 model for the image classification model and the U-Net model for the image segmentation model. Using the Natural Breaks algorithm, we divided water level data into 2, 4, and 8 groups for image classification models. The classification models of 2, 4, and 8 groups showed the accuracy of 1.000, 0.987, and 0.634, respectively. The image segmentation model showed a Dice score of 0.998 and predicted water levels showed R2 of 0.97 and MAE (Mean Absolute Error) of 0.02 m. The image classification models can be applied to the automatic gate-controller at four divisions of water levels. Also, the image segmentation model results can be applied to the alternative measurement for ultrasonic water gauges. We expect that the results of this study can provide a more scientific and efficient approach for agricultural water management.

A Case Study on Deformation Behaviors of CFRD with Water Level Change (수위변화에 따른 CFRD의 변형거동 사례분석)

  • Yun, Jung-Mann;Yea, Geu-Guwen;Kim, Hong-Yeon;Lee, Jae-Yeon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.1
    • /
    • pp.21-31
    • /
    • 2018
  • This paper analyzes the displacements of CFRD which was completed by field measurement. It is to understand the deformation behavior of the dam body according to the water level change from the impounding time. And it was compared with numerical analysis results. As a result of measuring the behavior of the dam crest and downstream slope according to impounding, horizontal displacements in axis direction of the dam, upstream and downstream displacements and settlements occurred mostly when the water level reaches about half of the dam height. The displacements continued until the water level reached its maximum. After that, it showed a constant convergence regardless of the water level. Horizontal displacements of the face slab which is the most important in CFRD were similar at all locations. The Horizontal displacements of the face slab showed the trends of increasing in winter and decreasing in summer due to the effect of the outside temperature before impounding. Also, the displacements increased until the water level reached about half of the dam height. After that, they decreased with rising in water level. As a result, the face slab behaviors according to seasonal change after impounding as well as water level condition. It is judged because of the material characteristics of the concrete slab. Numerical analysis showed slightly different maximum settlement and depth of occurrence from the measuring data after construction of the dam. It is considered that this is due to various design and construction differences such as the estimation of input parameters in analysis, construction period, and the layer thickness of construction. For the overall period of the dam, the settlements were mostly completed during the construction period and some settlements occurred in the early days of impounding and then converged.

Experimental and Analytical Study on the Water Level Detection and Early Warning System with Intelligent CCTV (지능형 CCTV를 이용한 수위감지 경보시스템에 대한 실험 및 해석적 연구)

  • Hong, Sangwan;Park, Youngjin;Lee, Hacheol
    • Journal of the Society of Disaster Information
    • /
    • v.10 no.1
    • /
    • pp.105-115
    • /
    • 2014
  • In this research, we developed video analytic algorithms to detect water-level automatically and a system for proactive alarming using intelligent CCTV cameras. We applied these algorithms and a system to test-beds and verified for practical use. We made camera-selection policies and operation plans to keep the detection accuracy high and to optimize the suitability for the ever-changing weather condition, while the environmental factors such as camera shaking and weather condition can affect to detection accuracy. The estimation result of algorithms showed 90% detection accuracy for all CCTV camera types. For water level detection, NIR camera performed great. NIR camera performed over 95% accuracy in day or night, suitable in natural weather condition such as shaking condition, fog, and low light, needs similar installment skills with common cameras, and spends only 15% high cost. As a result, we practically tested water level detection algorithms and operation system based on intelligent CCTV camera. Furthermore, we expect the positive evidences when it is applied for public use.

Parameter Estimation of Water Balance Analysis Method and Recharge Calculation Using Groundwater Levels (지하수위를 이용한 물수지분석법의 매개변수추정과 함양량산정)

  • An, Jung-Gi;Choi, Mu-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.4 s.165
    • /
    • pp.299-311
    • /
    • 2006
  • In this paper it is outlined the methodology of estimating the parameters of water balance analysis method for calculating recharge, using ground water level rises in monitoring well when values of specific yield of aquifer are not available. This methodology is applied for two monitoring wells of the case study area in northern area of the Jeiu Island. A water balance of soil layer of plant rooting zone is computed on a daily basis in the following manner. Diect runoff is estimated by using SCS method. Potential evapotranspiration calculated with Penman-Monteith equation is multiplied by crop coefficients($K_c$) and water stress coefficient to compute actual evapotranspiration(AET). Daily runoff and AET is subtracted from the rainfall plus the soil water storage of the previous day. Soil water remaining above soil water retention capacity(SWRC) is assumed to be recharge. Parameters such as the SCS curve number, SWRC and Kc are estimated from a linear relationship between water level rise and recharge for rainfall events. The upper threshold value of specific yield($n_m$) at the monitoring well location is derived from the relationship between rainfall and the resulting water level rise. The specific yield($n_c$) and the coefficient of determination ($R^2$) are calculated from a linear relationship between observed water level rise and calculated recharge for the different simulations. A set of parameter values with maximum value of $R^2$ is selected among parameter values with calculated specific yield($n_c$) less than the upper threshold value of specific yield($n_m$). Results applied for two monitoring wells show that the 81% of variance of the observed water level rises are explained by calculated recharge with the estimated parameters. It is shown that the data of groundwater level is useful in estimating the parameter of water balance analysis method for calculating recharge.

A Study on Estimation of Design Tidal level Considering Sea Level Change in the Korean Peninsula (한반도의 해수면 상승을 고려한 설계조위 산정에 관한 연구)

  • Choo, Tai Ho;Sim, Su Yong;Yang, Da Un;Park, Sang Jin;Kwak, Kil Sin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.4
    • /
    • pp.464-473
    • /
    • 2016
  • The air temperatures of the coast and inland are rising due to an increase in carbon dioxide emissions and abnormal climate phenomena caused by global warming, El Nino, La Nina and so on. The sea levels of the Earth are rising by approximately 2.0 mm per year (global average value) due to the thermal expansion of sea water, melting of glaciers and other causes by global warming. On the other hand, when it comes to designing a hydraulic structure or coastal hydraulic structure, the standard of the design water level is decided by analyzing four largeness tide values and a harmonic constant with the observed tidal water level or simulating numerical model. Therefore, the design tidal water level needs to consider an increasing speed of the seawater level, which corresponds to the design frequency. In the present study, the observed tidal water levels targeting 46 tidal stations operated by the Korea Hydrographic and Oceanographic Administration (KHOA) from the beginning of observations to 2015 per hour were collected. The variation of the monthly and yearly and increasing ratio were performed and divided into 7 seas, such as east and west part of the Southern Sea, south part and middle of the East Sea, south part and middle of the Western Sea, and Jeju Sea. The current study could be used to determine the cause of local seawater rises and reflect the design tidal water level as basic data.

The Verification of Application of Distributed Runoff Model According to Estimation Methods for the Missing Rainfall Data (결측강우보완방법에 따른 분포형 유출모형의 적용성 검증)

  • Choi, Yong-Joon;Kim, Yeon-Su;Lee, Gi-Ha;Kim, Joo-Cheol
    • Journal of Environmental Science International
    • /
    • v.19 no.12
    • /
    • pp.1375-1384
    • /
    • 2010
  • The purpose of this research is to understand the change of runoff characteristics by estimated spatial rainfall. Therefore, this paper largely composed of two parts. First, we compared the simulated result according to estimation method, ID(Inverse Distance Method, ID2(Inverse Square Distance Method), and Kr(General Covariance Kriging Method), after letting miss rainfall data to the observed data. Second, we reviewed the runoff characteristics of the distributed runoff model according to the estimated spatial rainfall. On the basis of Yuseong water level station, we select the target basin as Gabchun watershed. We assumed 1 point or 2 point of the 6 rainfall gauge stations in watershed were missed. We applied the spatial rainfall distributed by Kr to Hy-GIS GRM, distributed runoff model. When 1 point rainfall data is missed, Kr is superior to others in point rainfall estimation and runoff estimation of Hy-GIS GRM. However, in case rainfall data of 2 points is missed, all of three methods did not give suitable result for them. In conclusion, Kr showed better applicability than other estimated methods if rainfall's data less than 2 points is missed.

Estimation of a Transport and Distribution of COD using Eco-hydrodynamic Model in Jinhae Bay (생태계 모델을 이용한 진해만의 COD의 거동과 분포특성 평가)

  • Hong, Sok-Jin;Lee, Won-Chan;Jung, Rae-Hong;Park, Sung-Eun;Jang, Ju-Hyung;Kim, Hyung-Chul;Kim, Dong-Myung
    • Journal of Environmental Science International
    • /
    • v.16 no.12
    • /
    • pp.1369-1382
    • /
    • 2007
  • To find proper water quality management strategy for oxygen consumption organic matters in Jinhae bay, the physical process and net supply/decomposition in terms of COD was estimated by three-dimensional eco-hydrodynamic modeling. The estimation results of physical process in terms of COD showed that transportation of COD was dominant in loading area from land to sea, while accumulation of COD was dominant in $middle{\sim}bottom$ level. In case of surface level, the net supply rate of COD was $0{\sim}60\;mg/m^2/day$. The net decomposition rate of COD was $0{\sim}-0.05\;mg/m^2/day$($-5{\sim}-10$ m, in depth) to 2 level, and $-0.05{\sim}-0.20\;mg/m^2/day(10m{\sim})$ to bottom level. These results indicate that the biological decomposition and physical accumulation of COD are occurred for the most part of Jinhae Bay bottom. The variation of net supply or net decomposition rate of COD as reducing land based input loading is also remarkable. Therefore, it is important to consider both allochthonous and autochthonous oxygen demanding organic matters to improve the water quality of Jinhae Bay.

Estimation Indicator System for the Environmentally Friendliness of Residential Areas (주거지 환경친화성 평가 지표체계 개발)

  • Eom Boong-Hoon
    • Journal of Environmental Science International
    • /
    • v.14 no.11
    • /
    • pp.985-994
    • /
    • 2005
  • Recently, Environmental friendliness and sustainability become the main concern of residential area planning. This paper deals with the estimation indicator system for environmentally friendliness of residential areas. An interview survey was carried out for resident groups by the type of housing. 'Environmentally friendly residential site' is defined as 'A site of sustainable development with low undesirable impact on environment, friendliness to natural environments such as green areas and waters, and amenity, health & hygiene of residents' Totally, nineteen individual indicators, six categories and three principles(Low Impact, High Contact, Amenity & Health) were proposed as estimation indicator system. Residents showed high importance on principle of 'amenity & health'. Individual indicators such as 'garbage segregated collection', 'secure green areas' and 'cleanness of water and air' showed high weighting value by each principles. Satisfaction level of residents for individual indicators, such as 'garbage segregated collection', 'common gardens', and 'cleanness of residential areas', were comparatively high. By the result of factor analysis, the proposed model for indicator system was valid.

GEOSTATISTICAL INTEGRATION OF HIGH-RESOLUTION REMOTE SENSING DATA IN SPATIAL ESTIMATION OF GRAIN SIZE

  • Park, No-Wook;Chi, Kwang-Hoon;Jang, Dong-Ho
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.406-408
    • /
    • 2006
  • Various geological thematic maps such as grain size or ground water level maps have been generated by interpolating sparsely sampled ground survey data. When there are sampled data at a limited number of locations, to use secondary information which is correlated to primary variable can help us to estimate the attribute values of the primary variable at unsampled locations. This paper applies two multivariate geostatistical algorithms to integrate remote sensing imagery with sparsely sampled ground survey data for spatial estimation of grain size: simple kriging with local means and kriging with an external drift. High-resolution IKONOS imagery which is well correlated with the grain size is used as secondary information. The algorithms are evaluated from a case study with grain size observations measured at 53 locations in the Baramarae beach of Anmyeondo, Korea. Cross validation based on a one-leave-out approach is used to compare the estimation performance of the two multivariate geostatistical algorithms with that of traditional ordinary kriging.

  • PDF