• Title/Summary/Keyword: water leachate

Search Result 321, Processing Time 0.028 seconds

Sensitivity Analysis of the Leachate Level of a Landfill to Hydraulic Properties of Cover Soil and Waste (매립장의 복토재와 폐기물 수리특성에 대한 침출수위의 민감도 분석)

  • 주완호;장연수;김용인
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.5 no.2
    • /
    • pp.110-115
    • /
    • 1998
  • In this paper, the sensitivity of the leachate level is analyzed using the program HELP to reduce the high leachate level on the landfill. Hydraulic parameters analyzed were porosity, field capacity, wilting point and initial water content of cover soil and waste. Also, the influence of the difference between the initial water content and the field capacity on the leachate level in the landfill was analyzed. The results of the sensitivity analysis show that the increase of the porosity and the wilting point decreases the leachate level, while the increase of the field capacity and the hydraulic conductivity increases the leachate level. Major parameters to the change of the leachate level were the hydraulic conductivity in the case of cover soil and the porosity, the field capacity and the initial water content in the case of waste.

  • PDF

Environmental Assessments of Leachate from Medium Density Fiberboard in a Simulated Landfill

  • Lee, Min;Prewitt, Lynn;Mun, Sung Phil
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.5
    • /
    • pp.548-557
    • /
    • 2015
  • This study investigated environmental assessments of leachate containing formaldehyde from medium density fiberboard (MDF) disposed in laboratory-scale simulated landfills. Environmental impact assessment of leachate was conducted by measuring formaldehyde, toxicity, biochemical oxygen demand (BOD), chemical oxygen demand (COD), bacterial enumeration, and pH. Amount of formaldehyde in leachate from MDF in soil decreased to the level of soil only treatment by 28 days, and toxicity decreased as the amount of formaldehyde decreased. BOD and COD levels in leachate from the treatments containing MDF exceeded permissible discharge levels of BOD or COD throughout the experimental period. The pH levels of all treatment were within permissible discharge range except on day 0. Fewer bacteria were observed in leachate from MDF in soil treatment than other treatments (MDF only, cured UF resin in soil, and soil only). Consequently, the leachate from disposal of MDF in soil detrimentally affect on environment. However, soil buffered formaldehyde leaching and pH on leachate in this study. Waste MDF may be required the pre-water soaking treatment for leaching formaldehyde to reclaim on land.

Chemical Compatibility of Solidified Liner Materials (매립장 고화차수재의 화학용액과의 반응특성)

  • 정하익;조진우;임재상;김상길
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.343-346
    • /
    • 2002
  • The chemical compatibility of leachate with the two natural materials was analyzed by performing the hydraulic conductivity test. The selected liner materials were natural marine clay and weathered soil sampled from Kimpo wastefill and Daehwa Dong, Kyonggi Do, respectively. PARAFIX, which is mainly composed of paraffin, cement, stearic acid, PVA etc., was used as solidifying agent. The chemical solutions used in the test were 10% acetic acid, 10% methanol, and real leachate from Kimpo wastefill and the results of tests were compared with that of distilled water. The results of tests show that hydraulic conductivity of solidified clay was increased slightly with permeation of acetic acid, methanol and the increase of hydraulic conductivity was not shown with permeation of leachate, distilled water and in case of weathered soil. Based on the tests, it is ascertained that the tested liner materials can be stable with the solution of low concentration.

  • PDF

EFFECTS OF REACTION TIME AND pH ON FENTON'S BATCH PROCESS FOR THE TREATMENT OF LEACHATE

  • Choi, Heung-Jin;Kim, Il-Kyu
    • Journal of Korean Society on Water Environment
    • /
    • v.18 no.2
    • /
    • pp.169-187
    • /
    • 2002
  • The effects of important parameters such as reaction time and pH on the Fenton's process were evaluated using a batch reactor. It was proven that organic materials and heavy metals in leachate could be successfully removed by Fenton's reagent. Favorable operation conditions were investigated. It was observed that the reaction between ferrous iron and hydrogen peroxide with the production of hydroxyl radical was almost complete in 10 minutes. That is, the oxidation of organic materials by Fenton's reagent was so fast that it was complete in 30 minutes with batch experiments. With the formation of carbonic acid, pH of the batch reactor decreased to favorable acidic conditions without acid addition. The oxidation of organic materials in the leachate showed a pH dependence and was most efficient in the pH range of 2-3.

Microplastic release from damaged commercial teabags

  • Kim, Sion;Jo, Eun Ha;Choi, Soohoon
    • Membrane and Water Treatment
    • /
    • v.13 no.1
    • /
    • pp.21-28
    • /
    • 2022
  • The use of plastics in our everyday lives have been drastically increased during the last few decades. However with the usage of commercial plastic products there is a possibility of microplastic consumption, due to the fragmentation of the products. Additionally, the potential for microplastic ingestion may also be increased by using damaged products. Hence, the current study was conducted to understand the potential release of micro/nano plastics and organic matter from damaged teabags. To check the leakage tendency, the amount of damage to the tea bags from 1-10 cm were tested along with temperatures of 25-70℃, and exposure times from 5 min to 1 hr was tested. Release of fibrous micro/nanoplastics, and organic leachate from the damaged teabags were observed to understand the outflow conditions. Results showed that with the increased degree of damage, temperature, and exposure time increased the release of fiberous matter, where the increase of temperature, and exposure time increased organic leachate. Additional analysis confirmed the leachate of nylon polymers into the heated water.

Absorption Capacity of Heavy Metals and Harmful Elements of Waste Leachate Using by Fast Growing Trees (속성수를 이용한 쓰레기 매립지 침출수의 중금속 및 유해성분의 흡수, 제거 가능성)

  • 이동섭;우수영;김동근;김판기;권오규;배관호;이은주
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.3 no.2
    • /
    • pp.81-87
    • /
    • 2001
  • Populus euramericana and Betula platyphylla var. japonica have been identified as possible species for use for phytoremediation of landfills. To identify the capacity of waste leachate absorption in Populus euramericana and Betula platyphylla var, japonica, four different treatments were applied to these seedlings: leachate solution (100% leachate), 50% dilution (50% leachate: 50% water, v/v) and 25% dilution (25% leachate: 75% water, v/v) were applied to these two species. After the experiment, concentrations of heavy metals in tree biomass were analyzed by Inductively Coupled Plasma emission spectrometer (ICP). These two species can take up the hazardous parts of the leachate such as heavy metals. Especially, these species showed good absorption capacity of Al, Cr, and Fe elements. The result of this study suggested that these two species can take up the toxic materials through their roots and transport them to stems or leaves.

  • PDF

Complex Dielectric Constant of Soil Contaminated by Landfill Leachate with Measured Frequency (매립지 침출수로 오염된 토양의 측정주파수에 따른 유전특성 변화)

  • Oh Myoung-Hak;Bang Sun-Young;Park Jun-Boum;Lee Ju-Hyung;Lee Seock-Heon;Ahn Kyu-Hong
    • Journal of Soil and Groundwater Environment
    • /
    • v.9 no.3
    • /
    • pp.1-11
    • /
    • 2004
  • To evaluate the applicability of dielectric constant measurement method on the geoenvironmental investigation of subsurface contaminated by landfill leachate, the analysis on dielectric characteristics of sand containing contaminated pore water by landfill leachate was performed. The separate real and imaginary parts of dielectric constant were investigated in the frequency range of 75kHz to 12MHz. The real part of dielectric constant increased at the lower frequency wherea the real part of dielectric constant decreased at the higher frequency as the concentration of leachate increased. These results can be explained by the frequency dependence of space charge polarization and orientation polarization. The imaginary part of dielectric constant on the contaminated sand with leachate increased with their concentration for whole frequency range. These results are caused by the increase of energy loss due to the enhancement of conduction in soil with leachate concentration. The results in this study indicate that the dielectric constant measurement method has potential in evaluating the contaminated soil and pore water by landfill leachate.

Advanced Biological Treatment of Industrial Wastewater using Food Waste Leachate as an External Carbon Source: Full-Scale Experiment (음식물쓰레기 탈리액을 이용한 산업폐수의 생물학적 고도처리 실증실험)

  • Lee, Byeongcheol;Ahn, Johwan;Lee, Junghun;Bae, Wookeun
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.4
    • /
    • pp.461-466
    • /
    • 2011
  • The feasibility of utilizing food waste leachate as an external carbon source was tested to enhance biological nutrient removal from an industrial wastewater with an average flow rate of $164,800m^3/d$ and a low carbon/nitrogen ratio of 2.8. A considerable improvement in the removal of nitrogen and phosphorus was observed when a certain amount of the leachate, ranging from 70 to $142m^3/d$, was supplemented to the biological industrial wastewater treatment process. The addition of the leachate led to an increase in the BOD/N ratio (4.5) and the removal efficiency of nutritents from 29.7% to 71.7% for nitrogen and from 34.8% to 65.6% for phosphorus. However, an excessive dose of the leachate that significantly exceeded $120m^3/d$ caused serious operational problems, like oil-layer formation in the grit chamber and scum layer in the primary clarifier. Thus, an supplement of food waste leachate at a dose acceptable to an existing facilities can be a practical and effective means to enhance the nutrient removal from industrial wastewater and to dispose of the food waste leachate.

Formaldehyde Release from Medium Density Fiberboard in Simulated Landfills for Recycling

  • Lee, Min;Prewitt, Lynn;Mun, Sung Phil
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.5
    • /
    • pp.597-604
    • /
    • 2014
  • Laboratory-scale landfills (simulated landfills) were designed to determine the formaldehyde released into air and leachate from medium density fiberboard (MDF). Simulated landfills were constructed using cylindrical plastic containers containing alternating layers of soil and MDF for a total of five layers. The highest concentration of formaldehyde was found in the air and leachate from the MDF only treatment compared to treatments containing MDF and soil. At the end of the study (28 days), formaldehyde concentrations in air and leachate from treatments containing MDF and soil decreased by 70 percent and 99 percent, respectively, while the treatment containing MDF only still released formaldehyde into the air and leachate. Therefore, waste MDF after storing 4 weeks in water may be recycled as compost or mulch based on formaldehyde leaching. Also, these data indicate soil restricts formaldehyde release into air and leachate and provides new information about the fate of wood-based composite waste containing UF resin disposed in landfills.

Evaluation of Surface Water-preventing Materials on Stabilization of Contaminants in Tailings (광물찌꺼기에 함유된 오염물질의 안정화를 위한 표면 차폐재의 성능 평가)

  • Kim, Young-Kyu;Jung, Myung-Chae;Kim, Jung-Yul;Kim, Yoo-Sung;Lee, Jin-Soo;Park, Kwan-In
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.4
    • /
    • pp.53-61
    • /
    • 2011
  • This study examined evaluation on stabilization of major and trace elements in tailings by various surface water-preventing materials. Six columns were filled with tailings of the Sinlim mine, then covered with tailings only, compacted soils, clay, soil-bentonite mixture, pozzolan and bentonite mat. After injection of artificial rain water, the leachate was sampled with times (3, 6, 9 and 12 pore volume) and analysed for major (Ca, Na, Mg, K) and trace elements (As, Cd, Cu, Pb, Zn) by ICP-AES. With exception to pozzolan type, the pH values of leachate from the other types became stabilized from 5.5 to 7.5, and EC (electric conductivity) of leachate from them decreased with times. For the pozzolan type, however, the pH and EC of leachate increased with time due to its alkalinity producing system. Concentrations of most major and trace elements in leachate decreased and stabilized with time. Consequently, soil-bentonite mixed cover shows the best ability of water-preventing and reducing mobility of elements in tailings site.