• Title/Summary/Keyword: water inflow

Search Result 1,486, Processing Time 0.024 seconds

Temperature Effect on the Nutrient Removal in the Combined Biological Nutrient Removal System (CBNR) with Anaerobic-Intermittent Aerobic-Modified Oxic Reactors (혐기조-간헐포기조-개량조로 구성된 영양소 제거 공정에서 온도의 영향)

  • Kang, Young-Hee;Han, Gee-Bong
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.4
    • /
    • pp.639-647
    • /
    • 2006
  • The temperature effect at $20^{\circ}$ and $10^{\circ}$ on the nutrient removal efficiency was evaluated in the combined biological nutrient removal system (CBNR) with anaerobic-intermittent aerobic-oxic reactors. The test was conducted under the conditions of various ratios of intermittent aeration time and distribution of influent raw water to CBNR. The removal efficiencies of organics, nitrogen and phosphorus were a little bit better at $20^{\circ}$ than at $10^{\circ}$. However the large difference of temperature effect on the nutrient removal efficiency between $20^{\circ}$ and $10^{\circ}$ was not appeared because of highly sustained MLSS concentrations in the reactors and controlled intermittent aeration time. In the removal of phosphorus, Mode III (50/70 min in aeration on/off time, 3 times of intermittent aeration) showed more effective compared with short aeration time of Mode IV. In case of N, P removal, the denitrification rate was lower in Mode A with splitted inflow into anaerobic and intermittent aeration basins than in Mode B with sole inflow into anaerobic basin.

Variations of Limnological Functions in a Man-made Reservoir Ecosystem during High-flow Year vs. Low-flow Year

  • Lee, Sang-Jae;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.42 no.4
    • /
    • pp.487-494
    • /
    • 2009
  • We compared spatial and temporal variations of water chemistry between high-flow year ($HF_y$) and low-flow year ($LF_y$) in an artificial lentic ecosystem of Daechung Reservoir. The differences in the rainfall distributions explained the variation of the annual inflow and determined flow characteristics and water residence time and modified chemical and biological conditions, based on TP, suspended solids, and chlorophylla, resulting in changes of ecological functions. The intense rainfall and inflow from the watershed resulted in partial disruption of thermal structure in the metalimnion depth, ionic dilution, high TP, and high suspended solids. This condition produced a reduced chlorophyll-a in the headwaters due to low light availability and rapid flushing. In contrast, reduced inflow and low rainfall by drought resulted in strong thermal difference between the epilimnion and hypolimnion, low inorganic solids, high total dissolved solids, and low phosphorus in the ambient water. The riverine conditions dominated the hydrology in the monsoon of $HF_y$ and lacustrine conditions dominated in the $HF_y$. Overall data suggest that effective managements of the flow from the watershed may have an important role in the eutrophication processes.

A Study of Design Conditions for Decision Area of Constructed Wetland to treat Nonpoint Source Pollution from Agricultural Area (농촌유역 비점오염원처리를 위한 적정 인공습지 규모결정에 관한 연구(지역환경 \circled1))

  • 장정렬;박종민;권순국;윤경섭
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.490-499
    • /
    • 2000
  • Several studies on development of water quality treatment systems by wetlands are on going because of their benefits of low construction cost and high efficiency of waste water treatment. The objectives of this study were to review the necessary contents of survey and design factors for constructing constructed wetlands and to examine the required wetland area to treat non-point source pollution through case studies. The measurement of water quality and quantity in precipitation period is needed to analyse the inflow characteristics of the non-point pollution and to determine the amount of design flow. The design inflow for constructing constructed wetland was determined to the total runoff from 30mm of daily rainfall in the AMC(III) condition of the SCS method and is similar 70% of the annual mean runoff. The natural type wetland system with 0.1m of water depth and 5 hours of detention time was applied. From the results of the case studies, 70% of inflow could be treated and 1∼3% of wetland area of the total basin is needed.

  • PDF