• Title/Summary/Keyword: water hammer

Search Result 165, Processing Time 0.027 seconds

Estimation of Compressive Strength of Concrete with Granitic Aggregates : Rebound hammer and Ultrasonic Methods (화강암 골재를 사용한 콘크리트의 비파괴 시험에 의한 강도평가)

  • 김현우;이종태;윤기원;김병극;김무한;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.651-654
    • /
    • 1999
  • It is required that the compressive strength of concrete should be estimated accurately from the view point of efficient quality control and maintenance of buildings. In this paper, the equations to estimate the compressive strength of concrete using granite aggregates were suggested for both rebound hammer method and ultrasonic pulse velocity method. The results were compared with those for different age or curing condition. The rebound numbers for concrete cured in air were larger than for concrete cured in water. The difference between rebound numbers for concrete cured in water and in air was larger than for concrete cured in water. The difference between rebound numbers for concrete cured in water and in air was larger when water cement ratio was high. Also, with the increase of age, the velocity of ultrasonic pulse for concrete cured in air was measured larger when compared with that in water.

  • PDF

Pressure Wave Propagation in the Discharge Piping with Water Pool

  • Bang Young S.;Seul Kwang W.;Kim In-Goo
    • Nuclear Engineering and Technology
    • /
    • v.36 no.4
    • /
    • pp.285-294
    • /
    • 2004
  • Pressure wave propagation in the discharge piping with a sparger submerged in a water pool, following the opening of a safety relief valve, is analyzed. To predict the pressure transient behavior, a RELAP5/MOD3 code is used. The applicability of the RELAP5 code and the adequacy of the present modeling scheme are confirmed by simulating the applicable experiment on a water hammer with voiding. As a base case, the modeling scheme was used to calculate the wave propagation inside a vertical pipe with sparger holes and submerged within a water pool. In addition, the effects on wave propagation of geometric factors, such as the loss coefficient, the pipe configuration, and the subdivision of sparger pipe, are investigated. The effects of inflow conditions, such as water slug inflow and the slow opening of a safety relief valve are also examined.

Comparative Study on Water Hammer for Pump Station in High Pressurized Pipes in Kuwait

  • Shim, Kyu Dae;Kang, Yong Suk;Choung, Joon Yeon;Abdellatif, Mohamed;Kim, Dong Kyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.265-269
    • /
    • 2017
  • Because of abrupt changes for velocity in water, transient flow is occurred in practical life. To reduce and avoid the high or low pressure of pipe network system, various surge protection facilities are used to prevent the risk in pipe network system. Especially, we focused on study not only preventing positive and negative pressure but also selecting adequate equipment for high pressurized pipelines. Several critical cases were considered by undertaking a steady state hydraulic study and transient dynamic simulation and we suggested that the surge vessel of various surge protection system was recommended to control high and low pressures on pipeline system in perspective.

  • PDF

The Effect of Air Chamber Placed in Water Supply Piping System (급수배관계에서 에어 챔버의 설치효과에 관한 연구)

  • 이용화;최국광
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.12
    • /
    • pp.1047-1055
    • /
    • 2002
  • The present study is to investigate the pressure wave characteristics and the absorption of the maximum and minimum pressure generated by instantaneous valve closure and opening at the end of the straightening copper Piping system with and without an air chamber. Also, life of air chamber is investigated. Experiments were conducted under the following conditions: initial pressure of 1~5 bar, flow velocity of 0.5~3.0 m/s, water temperature of$20^{\circ}C$ and air chamber volume of 45.1~449.5$cm^3$ The results of the study can be used in sizing air chamber and selecting the water hammer absorbtion apparatus.

The Optimum Control Study for Improving Efficiency of the small hydropower generation in water pipe (수도관로 소수력발전 운영효율 향상을 위한 최적제어 방안)

  • Hong, Jeong-Jo;Rim, Dong-Heui;Kim, Soo-Sang
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.126-129
    • /
    • 2008
  • Using a surplus head in presented water supply pipes, we have studied to improve the operating efficiency of small hydro generator, which was chosen for a test model with Sung-Nam and Bo-Ryong small hydro power plant. With regard to power control and countermeasure of water hammer impact, Finally we have represented the optimal control method through the synthetical analysis of existing system symptoms, operation efficiency, the effect of water hammer impact and system configuration.

  • PDF

The Experimental Study of Water Hammer by Valve Closure in Water Supply Piping System (단순 급수관로에서의 워터 햄머 현상에 관한 연구)

  • 이용화;유지오;박효석;김영호
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.7
    • /
    • pp.697-702
    • /
    • 2000
  • This study is to investigate the pressure wave characteristics and the maximum pressure rise generated by instantaneous valve closure at the end of the straightening copper piping system. Experiments were conducted under the following conditions : initial pressure 1~5 bar, flow velocity 0.6~3.0 m/s and water temperature $20^{\circ}C$ . Results indicated that the peak pressure generated by quick valve closure reached Joukowsky's value. And we also found that the maximum pressure rise and the pressure history were depended on not only closing time but also flow velocity.

  • PDF

Development of Water Hammer Simulation Model for Safety Assessment of Hydroelectric Power Plant (수력발전설비의 안전도 평가를 위한 수충격 해석 모형 개발)

  • Nam, Myeong Jun;Lee, Jae-Young;Jung, Woo-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.760-767
    • /
    • 2020
  • Sustainable growth of hydroelectric power plants is expected in consideration of climate change and energy security. However, hydroelectric power plants always have a risk of water hammer damage, and safety assurance is very important. The water hammer phenomenon commonly occurs during operations such as rapid opening and closing of the valves and pump/turbine shutdown in pipe systems, which is more common in cases of emergency shutdown. In this study, a computational numerical model was developed using the MOC-FDM scheme to reflect the mechanism of water hammer occurrence. The proposed model was implemented in boundary conditions such as reservoir, pipeline, valve, and pump/turbine conditions and then applied to simulate hypothetical case studies. The analysis results of the model were verified using the analysis results at the main points of the pipe systems. The model produced reasonably good performance and was validated by comparison with the results of the SIMSEN package model. The model could be used as an efficient tool for the safety assessment of hydroelectric power plants based on accurate prediction of transient behavior in the operation of hydropower facilities.

Scenario-based Vulnerability Assessment of Hydroelectric Power Plant (시나리오 기반 수력플랜트 설비의 취약성 평가)

  • Nam, Myeong Jun;Lee, Jae Young;Jung, Woo Young
    • Journal of Korean Society of Disaster and Security
    • /
    • v.14 no.1
    • /
    • pp.9-21
    • /
    • 2021
  • Recently, the importance of eco-friendly power generation facility using renewable energy has newly appeared. Hydropower plant is a very important source of electricity generation and supply which is very important to secure safety because it is commonly connected with multi facility and operated on a large scale. In this study, a scenario-based analysis method was suggested to assess vulnerability of a penstock system caused by water hammer commonly occurred in the operation of hydropower plants. A hypothetical hydropower plant was used to demonstrate the applicability of a transient analysis model. In order to verify reliability of the model, the prediction of pressure behaviors were compared with the results of commercial model (SIMSEN) and measured data, then a real hydroelectric power plant was applied to develop all potential water hammer scenarios during the actual operation. The scenario-based simulation and vulnerability assessment for water hammer in the penstock system were performed with internal and external load conditions. The simulation results indicated that the vulnerability of a penstock system was varied with the operating conditions of hydropower facilities and significantly affected by load combination consisting of different load scenarios. The proposed numerical method could be an useful tool for the vulnerabilityty assessment of the hydropower plants due to water hammer.