• 제목/요약/키워드: water flow system

검색결과 3,076건 처리시간 0.023초

지열순환펌프 유량변화에 따른 지열히트펌프시스템의 에너지 성능 평가 (A Study on the Geothermal Heat Pump System Performance Analysis according to Water Flow Rate Control of the Geothermal Water Circulation Pump)

  • 정영주;조재훈;김용식;조영흠
    • 한국태양에너지학회 논문집
    • /
    • 제34권6호
    • /
    • pp.103-109
    • /
    • 2014
  • It is important to control the amount of supply water flow rate at all kinds of HVAC systems in order to maintain IAQ and energy efficiency. The most of buildings installed geothermal heat pumps is using fixed water flow rate in spite of the excellent performance of geothermal heat pumps. Especially when the air-conditioning load is low, the flow rate control may be possible to save energy to operate. However, it is effective to apply the variable flow control system in order to reduce energy consumption. Therefore, the purpose of this study, change a water flow rate and improve the whole performance of the geothermal heat pump. Geothermal heat pump system is modeled after the selection of the applied building, by setting the flow rate control to be analyzed through a simulation of performance evaluation. Building energy saving according to the flow rate of the ground circulating water analyze quantitatively and to investigate the importance of the flow control.

Development of a System of r Regular Evaluation of Streamflow Data (KOwaco's Regular Streamflow Appraising System)

  • Noh, jae-Kyoung
    • 한국농공학회지
    • /
    • 제42권
    • /
    • pp.24-30
    • /
    • 2000
  • A system for evaluating streamflow data (KORSAS) was developed, and is operated using PC based Windows to help the hydrological observation practitioner's working in Korea Water Resources Corporation (KOWACO). This system has modules including; DB access and data management, flow measurement arranging, H-Q relation deriving, area rainfall calculating, flow calculating, and flow evaluating modules. Evaluation of observed streamflow is accomplished through the following processes. First, hourly streamflow data is calculated from water level data stored in a DB server by applying the rating relationship between water level and flow rates derived from the past flow measurements. Second, hourly areal rainfal data is calculated from point data stored in the DB server by applying Thiessen networks. Third, hydrographs are displayed on a daily, weekly, monthly, or seasonal duration basis, and are compared to hydrographs of reservoir inflow, hydrographs at water level observation stations and hydrographs derived from simulated results using models.

  • PDF

공조장치내의 직렬-직렬 대향류 냉각기에서 최적 변수 (The optimal parameters in series-series counterflow chillers system within air conditioning)

  • 웬민푸;뷔옥훙;이근식
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.1332-1336
    • /
    • 2009
  • If water-chillers are arranged in series-series counterflow, compressor lift of each chiller will be decreased in comparison with water-chillers in parallel. That means that compressor power of the chillers in series will be lower than that of chillers in parallel. However, the pressure drop of the water flow through the chillers in series will increase, and thus increase the power of water pumps. This disadvantage will be made good by increasing the temperature difference of water flow through evaporator and condenser, but the water flow rates will decrease. This paper explores the optimal parameters in system of series-series counterflow for central chilled water plants such as the leaving chilled water temperature, the leaving condenser water temperature, condenser water flow rate and number of chillers in series.

  • PDF

An Experimental Study on the Performance of Air/Water Direct Contact Air Conditioning System

  • Yoo, Seong-Yeon;Kwon, Hwa-Kil
    • Journal of Mechanical Science and Technology
    • /
    • 제18권6호
    • /
    • pp.1002-1009
    • /
    • 2004
  • Direct contact air conditioning systems, in which heat and mass are transferred directly between air and water droplets, have many advantages over conventional indirect contact systems. The purpose of this research is to investigate the cooling and heating performances of direct contact air conditioning system for various inlet parameters such as air velocity, air temperature, water flow rate and water temperature. The experimental apparatus comprises a wind tunnel, water spray system, scrubber, demister, heater, refrigerator, flow and temperature controller, and data acquisition system. The inlet and outlet conditions of air and water are measured when the air contacts directly with water droplets as a counter flow in the spray section of the wind tunnel, and the heat and mass transfer rates between air and water are calculated. The droplet size of the water sprays is also measured using a Malvern Particle Analyzer. In the cooling conditions, the outlet air temperature and humidity ratio decrease as the water flow rate increases and as the water temperature, air velocity and temperature decrease. On the contrary, the outlet air temperature and humidity ratio increase in the heating conditions as the water flow rate and temperature increase and as the air velocity decreases.

복합 발전소 주급수 재순환 배관계의 고진동 현상 및 대책 (Examination on High Vibration of Recirculation System for Feed Water Piping in Combined Cycle Power Plant)

  • 김연환;김재원;박현구
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 춘계학술대회 논문집
    • /
    • pp.648-654
    • /
    • 2011
  • The feed-water piping system constitutes a complex flow impedance network incorporating dynamic transfer characteristics which will amplify some pulsation frequencies. Understanding pressure pulsation waves for the feed-water recirculation piping system with cavitation problem of flow control valve is very important to prevent acoustic resonance. Feed water recirculation piping system is excited by potential sources of the shock pulse waves by cavitation of flow control valve. The pulsation becomes the source of structural vibration at the piping system. If it coincides with the natural frequency of the pipe system, excessive vibration results. High-level vibration due to the pressure pulsation affects the reliability of the plant piping system. This paper discusses the piping vibration due to the effect of shock pulsation by the cavitation of the flow control valves for the recirculation piping of feed-water pump system in combined cycle power plants.

  • PDF

오염총량관리제 지원을 위한 유역모형 기반 유량지속곡선 및 부하지속곡선 활용방안 (Application of FDC and LDC using HSPF Model to Support Total Water Load Management System)

  • 이은정;김태근;금호준
    • 한국물환경학회지
    • /
    • 제34권1호
    • /
    • pp.33-45
    • /
    • 2018
  • In this study, we discussed the application of Watershed model and Load Duration Curves (LDC) in Total Water Load Management System. The Flow Duration Curves (FDC) and the LDC were generated using the results of the daily HSPF model and analyzed on monthly or yearly flow duration variability, and non-point pollutant discharge loads by entire flow conditions. As a result of the calibration and verification of the HSPF model, both the flow and the water quality were appropriately simulated. The simulated values were used to generate the Flow Duration Curve and the Load Duration Curve, and then the excess rate by entire flow conditions was analyzed. The point and non-point pollutant discharge loads for entire flow conditions were calculated. It is possible to evaluate the variability of water quality in specific flow duration through the curves reflecting the flow duration variability and to confirm the characteristics of the pollutant source. For a more scientific Total Water Load Management System, it is necessary to switch from a current system to a system that can take into account the entire flow conditions. For this, the application of the watershed model and load duration curve is considered to be the best alternative.

Water Injection/Urea SCR System Experimental Results for NOx Reduction on a Light Duty Diesel Engine

  • Nam, Jeong-Gil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권3호
    • /
    • pp.394-403
    • /
    • 2008
  • The effects of water injection (WI) and urea injection for NOx on a 4-cylinder Direct Injection (DI) diesel engine were investigated experimentally. For water injection, it was installed at the intake pipe and the water quantity was controlled at the intake manifold and Manifold Air Flow (MAF) temperatures while the urea injection was located at the exhaust pipe and the urea quantity was controlled by NOx quantity and MAF. The effects of WI system, urea-SCR system and the combined system were investigated with and without exhaust gas recirculation (EGR). Several experiments were performed to characterize the urea-SCR system, using engine operating points of varying raw NOx emissions. The results of the Stoichiometric Urea Flow (SUF) and NOx map were obtained. In addition, NOx results were illustrated according to the engine speed and load. It is concluded that the NOx reduction effects of the combined system without the EGR were better than those with the EGR-based engine.

수질오염총량관리 단위유역 수질변화 유형분석 - 낙동강수계를 대상으로 - (A Study on the Water Quality Patterns of Unit Watersheds for the Management of TMDLs - in Nakdong River Basin -)

  • 박준대;김진이;류덕희;정동일
    • 한국물환경학회지
    • /
    • 제26권2호
    • /
    • pp.279-288
    • /
    • 2010
  • The water quality variations or changes are closely relevant to the characteristics of unit watersheds and have an effect on the attainment of their water quality goal. This study was conducted to analyze the water quality distribution and its change patterns of unit watersheds in Nakdong river basin. It revealed that 25 unit watersheds out of 41 showed the normality in water quality. Most of unit watersheds had a considerable variation in water quality, especially in the season of spring and summer but a little in terms of flow rate. Annual relative differences in water quality ranged from 13.0 to 26.6% with the maximum of 75%. 28 unit watersheds (62%) had the tendency to decrease in water quality as the flow rate increased while 13 (38%) to increase. The extension of standard flow led to considerable differences in water quality depending on its ranges, which meant uncertainties might be included in the process of TMDL development. It is suggested that annual average flow rate should be chosen as a standard flow in the area where the water quality change has little relation to the flow rate.

실별제어 온수분배기의 유량분배 특성 (A Flow Quantity Distribution Characteristics of the Hot Water Header for Individual Room Control System)

  • 성순경
    • 설비공학논문집
    • /
    • 제20권3호
    • /
    • pp.175-180
    • /
    • 2008
  • Flow quantity to supply to a coil in floor heating system is important to achieve comfortable indoor air condition in the winter season. The hot water header is used to distribute the water into the coil. Experimental study has been performed using the water header that have 5 branches consisted of flow control valves and automatic shut-off valves. Each branch line connected it with X-L pipe. Experimental tests accomplished it to investigate the flow distribution characteristics of the hot water header. Experimental results show that the selection of the pump head and differential pressure are very important to save running energy of the system, and high differential pressure needs more friction loss in the case of suitable differential pressure for balancing of the header.

냉각수 계통의 운전변수가 중앙냉방시스템의 에너지소비량에 미치는 영향 (The Effects of Operational Conditions of Cooling Water System on Energy Consumption for Central Cooling System)

  • 안병천
    • 한국지열·수열에너지학회논문집
    • /
    • 제13권4호
    • /
    • pp.8-13
    • /
    • 2017
  • The effects of operational conditions of cooling water system on energy consumption for central cooling system are researched by using TRNSYS program. Cooling tower water pump flow rate, cooling tower fan flow rate, and condenser water temperature with various dry-bulb and wet-bulb temperatures are varied and their effects on total and component power consumption are studied. If the fan maximum flow rates of cooling tower is decreased, cooling tower fan and total power consumptions are increased. If the cooling tower water pump maximum flow rates is decreased, chiller and total power consumptions are increased. If condenser water set-point temperature is increased, chiller power consumption is increased and cooling tower fan power consumption is decreased, respectively.