• Title/Summary/Keyword: water flow model

Search Result 3,147, Processing Time 0.037 seconds

Effect of Flow Direction on Two-Phase Flow Distribution of Refrigerants at a T-Junction

  • Tae Sang-Jin;Cho Keum-Nam
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.717-727
    • /
    • 2006
  • The present study experimentally investigated the effect of flow direction and other flow parameters on two-phase flow distribution of refrigerants at a T-junction, and also suggested a prediction model for refrigerant in a T-junction by modifying previous model for air-water flow. R-22, R-134a, and R-410A were used as test refrigerants. As geometric parameters, the direction of the inlet or branch tube and the tube diameter ratio of branch to inlet tube were chosen. The measured data were compared with the values predicted by the models developed for air-water or steam-water mixture in the literature. We propose a modified model for application to the reduced T-junction and vertical tube orientation. Among the geometric parameters, the branch tube direction showed the biggest sensitivity to the mass flow rate ratio for the gas phase, while the inlet quality showed the biggest sensitivity to the mass flow rate ratio among the inlet flow parameters.

Three-dimensional Numerical Modelling of Seawater Circulation of Semi-enclosed Bay with the Flow-control Structures

  • JONG-KYU KIM;TAE-SOON KANG;HEON-TAE KIM
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.3
    • /
    • pp.35-42
    • /
    • 2001
  • The characteristics of tidal circulation with the flow-control structures using the three-dimensional numerical model (POM, Princeton Ocean Model) of Chinhae Bay, Korea were investigated. To confirm th efficiencies of flow-control structures, the training wall and submerged training wall were constructed at the mouth and narrow channel in Chinhae Bay. On the basis of the present investigation, the tidal circulation induced by the construction of flow-control structures could enhance the water exchange improvement appropriately. And, th training wall at the central is more dominated than the other structures for the efficient of water exchange. The sites and types of structure and flow patterns seem to be very sensitive in tidal simulation and changes in flow fields.

  • PDF

A PRELIMINARY STUDY FOR THE COUPLED ATMOSPHERS-STREAMFLOW MODELING IN KOREA

  • Bae, Deg-Hyo;Chung, Jun-Seok;Kwon, Won-Tae
    • Water Engineering Research
    • /
    • v.1 no.1
    • /
    • pp.25-37
    • /
    • 2000
  • This study presents some results of a preliminary study for the coupled precipitation and river flow prediction system. The model system in based on three numerical models, Mesoscale Atmospheric Simulation model for generating atmospheric variables. Soil-Plant-Snow model for computing interactions within soil-canopy-snow system as well as the energy and water exchange between the atmosphere and underlying surfaces, and TOPMODEL for simulating stream flow, subsurface flow, and water tabled depth in an watershed. The selected study area is the 2,703 $\alpha_4$ $\km_2$ Soyang River basin with outlet at Soyang dam site. In addition to providing the results of rainfall and stream flow predictions, some results of DEM and GIS application are presented. It is obvious that the accurate river flow predictions are highly dependant on the accurate predictation predictions.

  • PDF

Estimation of irrigation return flow from paddy fields based on the reservoir storage rate

  • An, Hyunuk;Kang, Hansol;Nam, Wonho;Lee, Kwangya
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.1
    • /
    • pp.19-28
    • /
    • 2020
  • This study proposed a simple estimation method for irrigation return flow from paddy fields using the water balance model. The merit of this method is applicability to other paddy fields irrigated from agricultural reservoirs due to the simplicity compared with the previous monitoring based estimation method. It was assumed that the unused amount of irrigation water was the return flow which included the quick and delayed return flows. The amount of irrigation supply from a reservoir was estimated from the reservoir water balance with the storage rate and runoff model. It was also assumed that the infiltration was the main source of the delayed return flow and that the other delayed return flow was neglected. In this study, the amount of reservoir inflow and water demand from paddy field are calculated on a daily basis, and irrigation supply was calculated on 10-day basis, taking into account the uncertainty of the model and the reliability of the data. The regression rate was calculated on a yearly basis, and yearly data was computed by accumulating daily and 10-day data, considering that the recirculating water circulation cycle was relatively long. The proposed method was applied to the paddy blocks of the Jamhong and Seosan agricultural reservoirs and the results were acceptable.

Three-dimensional groundwater water flow in an upland area-groundwater flow analysis by steady state three-dimensional model (홍적지대에 있어서의 지하수의 3차원적 유동-3차원 정상류모델에 의한 지하수 유동해석)

  • 배상근
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 1987.07a
    • /
    • pp.113-122
    • /
    • 1987
  • A numerical simulation technique of three-dimensional finite difference model is developed to study the groundwater flow system in Dcjima, an upland area which faces Kasumigaura Lake. For general perspectives of the groundwater flow system, a steady state three-dimentional model is simulated. For the sedimentary mud formations which are found in the representative formation, three situations of hydraulic conductivity are considered, representing an isotropic condition and situations where the horizontal permeability is equal to 10 times and 100times of the vertical one. The finite difference grid used in the simulation has 60x50x30=90,000 nodes. A converged solution with a tolerance of 0.001 meter of hydraulic head is set. Having determined the flow net by using a steady state three-dimensional model. the results for the three cases of hydraulic conductivity are compared with the results of tracer methods (Bae and Kayane 1987) With the aid of four representative vertical cross-sections, groundwater flow systems in the study area are assumed. Water balances for the three cases indicate very good agreement between total recharge and discharge in each case Analyses of groundwater flow system based on the tritium concentrations and water quality measurements (Bae and Kayane 1987) are confirmed by the numerical simulation and the results obtained by these two methods appeared to be in close agreement.

  • PDF

Development of the CAP Water Quality Model and Its Application to the Geum River, Korea

  • Seo, Dong-Il;Lee, Eun-Hyoung;Reckhow, Kenneth
    • Environmental Engineering Research
    • /
    • v.16 no.3
    • /
    • pp.121-129
    • /
    • 2011
  • The completely mixed flow and plug flow (CAP) water quality model was developed for streams with discontinuous flows, a condition that often occurs in low base flow streams with in-stream hydraulic structures, especially during dry seasons. To consider the distinct physical properties of each reach effectively, the CAP model stream network can include both plug flow (PF) segments and completely mixed flow (CMF) segments. Many existing water quality models are capable of simulating various constituents and their interactions in surface water bodies. More complicated models do not necessarily produce more accurate results because of problems in data availability and uncertainties. Due to the complicated and even random nature of environmental forcing functions, it is not possible to construct an ideal model for every situation. Therefore, at present, many governmental level water quality standards and decisions are still based on lumped constituents, such as the carbonaceous biochemical oxygen demand (CBOD), the total nitrogen (TN) or the total phosphorus (TP). In these cases, a model dedicated to predicting the target concentration based on available data may provide as equally accurate results as a general purpose model. The CAP model assumes that its water quality constituents are independent of each other and thus can be applied for any constituent in waters that follow first order reaction kinetics. The CAP model was applied to the Geum River in Korea and tested for CBOD, TN, and TP concentrations. A trial and error method was used for parameter calibration using the field data. The results agreed well with QUAL2EU model predictions.

Sensitivity Analysis of Dry/Wet Algorithm for 2-Dimensional Finite Element Analysis (2차원 유한요소해석을 위한 마름/젖음 알고리듬의 민감도 분석)

  • Han, Kun-Yeun;Kim, Sang-Ho;Choi, Seung-Yong;Hwang, Jae-Hong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.827-831
    • /
    • 2009
  • Recently, frequency occurring flood and drought has increased the necessity of an effective water resources control and management of river flows. Therefore, the simulation of the flow distribution in natural rivers is great importance to the solution of a wide variety of practical flow problems in water resources engineering. However The serious problem facing two-dimensional hydraulic model is the treatment of wet and dry areas. The objective of this study is to investigate the wet and dry parameters that have direct relevance to model performance in situations where inundation of initially dry areas occurs. Several numerical simulations were carried out, which examined the performance of the marsh porosity method for the purpose of sensitivity analysis. Experimental channel and a variety of channel were performed for model tests. The results were compared with those of the observation data and simulation data of existing model. The RMA-2 model displayed reasonable flow distribution compare to the observation data and simulation data of existing model in dry area for application of natural river flow. As a result of this study, effectively applied marsh porosity method provide a reliable results for flow distribution of wet and dry area, it could be further developed to basis for extending to water quality and sediment transport analysis.

  • PDF

2-Dimensional Model Development for Water Quality Prediction

  • Paik, Do-Hyeon
    • Journal of Environmental Health Sciences
    • /
    • v.31 no.6
    • /
    • pp.489-497
    • /
    • 2005
  • A numerical method for the mathematical water modeling in 2-dimensional flow has been developed. The model based on a split operator technique, in which, the advection term is calculated using the upwind scheme. The diffusion term is one- dimensionalized and calculated using Crank-Nicholson's implicit finite difference scheme to reduce the numerical errors from large time steps and variable spacings. It also provides a relatively simple and economic method for more accurate simulation of pollutant dispersion. Water depths and flow velocities in the Boreyong reservoir during the normal water periods were predicted by numerical experiments with a 2-dimensional flow model so as to provide current field data for the study of advection and diffusion of pollutants. Developed 2-dimensional water quality model is applied to Boreyong reservoir to simulate a spatial and periodical changes of water quality.

Water Surface Profile Computations at Irrigation Channel Networks (관개용수로에서의 수면곡선 계산)

  • 김현준;박승우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.30 no.3
    • /
    • pp.114-120
    • /
    • 1988
  • A water surface profile computation model using a standard step procedure was developed for gradually varied flow at an irrigation channel network. Flow characteristics ab Banweol district near Suweon were field monitored during irrigation periol of 1987. The model was applied to the main system at the district and the simulation results were compared to the field data. The results are sumrnarized as follows ; 1. The simulated water surface profiles from the model were in good agreement with the measured water surface profiles at different flow rates. 2. The model applicability for defining a stage-discharge relationship at a channel reach was demonstrated with reasonable accuracy when water stage and friction factor were given. 3. The roughness coefficient was found to be a major factor sigrificantly affecting computed water surface profile among a few physical input parameters for the model.

  • PDF

The Effect of Flow Induction Machine in Water Circulation System of Cheongna Canal Way (청라지구 물순환체계내 주운수로의 흐름유발시설 설치효과)

  • Kim, Dong-Eon;Choi, Gye-Woon;Park, Young-Sik;Yoon, Geun-Ho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.77-81
    • /
    • 2010
  • This study carried out hydraulic model test for water circulation system in Cheongna district as part of Incheon Free Economic Zone. Canal way project of Cheongna was planned to establish for environment-friendly water circulation system, improve quality of life and diversification of traffic through using boat as a water-friendly international business city. The navigation canal, There are two intake facility in central park and it can purify water 15,000$m^3$ per day. After purify, water move to 8 facility of water culture area which supplies water in canal way. This process called water circulation system in cheongna. Also, there are several flow induction machine in canal way except south-north way. Therefore, this study will verify about validity of water circulation system's safety through hydraulic model test.

  • PDF