• Title/Summary/Keyword: water environmental management

Search Result 2,961, Processing Time 0.032 seconds

A Study on the Management of Micropollutants in Water System Considering Climate Change and other Potential Effects (기후변화 등 잠재적 영향을 고려한 수중 미량오염물질의 관리방향 연구)

  • Kim, Hojeong;Hong, Yongsuk;Ahn, Jong Ho
    • Korean Chemical Engineering Research
    • /
    • v.51 no.6
    • /
    • pp.645-654
    • /
    • 2013
  • In this study, the management polices of micropollutants (MPs) were reviewed and the future management strategy was discussed considering climate change and etc. In Korea, the investigation of drinking water has been actively carried out for the priority contaminants as well as MPs. Recently river and lake waters have been also examined for MPs. However, the coverage and depth of the investigation is limited. Moreover, climate change is likely to increase air & water temperature and it will affect the hydrological cycle. Such changes may increase the residual concentrations of MPs in water system. As water reuse increases, the residual MPs of the recycled water may create public concerns. Thus, in a viewpoint of the precautionary principle, more stringent management of MPs is recommended for the drinking water and the body-contact water use. For the surface water, more studies are necessary to understand the ecological risk by MPs.

Improvement and Application of Total Maximum Daily Load Management System of Korea: 1. Calculation of Total Amount of Pollutant Load in the Anyangcheon Watershed (우리나라 오염총량관리제도의 개선 및 적용: 1. 안양천 유역의 오염부하량 산정)

  • Kim, Kyung-Tae;Chung, Eun-Sung;Kim, Sang-Ug;Lee, Kil Seong;Seong, Jin-Young
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.6
    • /
    • pp.972-978
    • /
    • 2009
  • This study modifies the present total maximum daily load (TMDL) system of Ministry of Environment and applies to the Anyangcheon watershed. Hydrologic Simulation Program-FORTRAN (HSPF) model is used to simulate both runoff and non-point source pollution, simultaneously, instead of QUAL2E. The drought flow (355th daily flow) is proposed for the target water quantity since it is easier to satisfy low flow (275th daily flow) for the target water quality than drought flow. The increase of discharge is more than the increase of pollutant load except for the period under low flow. The measured unit loads for non-point source are used to consider the regional runoff characteristics. The measured water quantity and quality data are used since the ministry of environment supports only water quality. This analysis results show some reasons for the improvement of the present TMDL system of Korea.

A Study on the GIS for The Sea Environmental Management II (- Developing a Line Density Algorithm for The Quantification to the Sea Surface Temperature Distribution - ) (GIS을 활용한 해양환경관리에 관한 연구 II (해수면 수온분포의 정량화를 위한 선 밀도 알고리즘 개발))

  • Lee, Hyoung-Min;Park, Gi-Hark
    • Journal of environmental and Sanitary engineering
    • /
    • v.21 no.4 s.62
    • /
    • pp.61-76
    • /
    • 2006
  • A Line Density algorithm was developed to quantify the sea surface temperature distribution using NOAA Sea Surface Temperature(SST) data and Geographic Information Systems(GIS), In addition, a GIS based automation model was designed to extract the Line Density Indices were determined by applying K-means Cluster. SST data in terms of March to May obtained on the coastal area of the Uljin from 2001 to 2004 in spring were used to make two data sets of average sea water temperature map in terms of year as well as month. From the result it was formed that water temperature gradient in April was the strongest among the other months, In particular very strog formation of oceanic front as well as temperature gradients were observed in front of the coastal area around Wonduk and Jukbyeon countries. Because those coastal area is a confront zone of two cold and a warm. It is expected that the development of a Line Density Algorithm would contribute to quantify of the SST for the research of Sea Surface Front(SSF) related to marine life management and the sea environmental conservation.

Estimation of Irrigation Return Flow on Agricultural Watershed in Madun Reservoir (마둔저수지 농업유역의 관개 회귀수량 추정)

  • Kim, Ha-Young;Nam, Won-Ho;Mun, Young-Sik;Bang, Na-Kyoung;Kim, Han-Joong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.2
    • /
    • pp.85-96
    • /
    • 2021
  • Irrigation return flow is defined as the excess of irrigation water that is not evapotranspirated by direct surface drainage, and which returns to an aquifer. It is important to quantitatively estimate the irrigation return flow of the water cycle in an agricultural watershed. However, the previous studies on irrigation return flow rates are limitations in quantifying the return flow rate by region. Therefore, simulating irrigation return flow by accounting for various water loss rates derived from agricultural practices is necessary while the hydrologic and hydraulic modeling of cultivated canal-irrigated watersheds. In this study, the irrigation return flow rate of agricultural water, especially for the entire agricultural watershed, was estimated using the SWMM (Storm Water Management Model) module from 2010 to 2019 for the Madun reservoir located in Anseong, Gyeonggi-do. The results of SWMM simulation and water balance analysis estimated irrigation return flow rate. The estimated average annual irrigation return flow ratio during the period from 2010 to 2019 was approximately 55.3% of the annual irrigation amounts of which 35.9% was rapid return flow and 19.4% was delayed return flow. Based on these results, the hydrologic and hydraulic modeling approach can provide a valuable approach for estimating the irrigation return flow under different hydrological and water management conditions.

Estimating the Demand for Domestic Water in Seoul : Appilcation of the Error Correction Model (서울시 생활용수 수요 추정 -오차수정모형을 적용하여-)

  • Kwak, Seung-Jun;Lee, Chung-Ki
    • Environmental and Resource Economics Review
    • /
    • v.11 no.1
    • /
    • pp.81-97
    • /
    • 2002
  • Unlike the existing supply-centered water policy, demand management policy of water has become an increasingly important issue in Korea. This paper attempts to analyse the demand for domestic water in Seoul. We employed Engle-Granger's error correction model(ECM) to deduced the price and income elasticities of the water demand. Particularly, we used accounted water amounts instead of supplied water amounts as representative variable of water demand. The result indicates that ECM set up is appropriate and short-run and long-run price elasticities derived by the model are -0.145 and -1.414. In contrast with other studies, we can conclude that the water demand for the water price is elastic. Besides, we can infer from this result that the water price policy with respect to a decrease of leakage ratio is more effective.

  • PDF

Environmental Impact Assessment and Environmental Monitoring: Monitoring Factors and Organization (환경영향평가와 측정 : 환경처 업무 중심으로)

  • Kang, In-Goo;Chang, Chun-Ki;Han, Eui-Jung;Kim, Myung-Jin
    • Journal of Environmental Impact Assessment
    • /
    • v.3 no.2
    • /
    • pp.69-75
    • /
    • 1994
  • Environmental Impact Assessment is composed of screening, scoping, inventory survey, prediction, assessment, alternative assessment, mitigation measure, and post management. Environmental monitoring data is applied to EIA process such as prediction and post management. It must he collected and managed systematically for effective applying in EIA process. This article explains factors such as air quality, water quality, soil, ocean, odor, noise & vibration, ecosystem, etc. and organizations of environmental monitoring managed by Ministry of Environment.

  • PDF

Analysis of Production Process Improvement with Life Cycle Assessment $Technology{\sim}$ Example of HDPE Pipe Manufacturing

  • Tien, Shiaw-Wen;Chiu, Chung-Ching;Chung, Yi-Chan;Tsai, Chih-Hung;Chang, Chin-Fa
    • International Journal of Quality Innovation
    • /
    • v.8 no.2
    • /
    • pp.32-56
    • /
    • 2007
  • Life Cycle Assessment (LCA) aims to analyze possible impact upon manufacturing process and availability of products, and also study the environmental considerations and potential influence during entire life cycle ranging from procurement, production and utilization to treatment (namely, from cradle to tomb). Based on high-density polyethylene (HDPE) pipe manufacturing of company A, this case study would involve evaluation of environmental influence during the production process. When the manufacturing process has been improved during "production process" and "forming cooling" stage, it is found that capital input on "electric power" and "water supply" could be reduced, thus helping to sharpen the competitive power of company A, and also ensure sustainable economic and industrial development in accordance with national policies on environmental protection.

Evaluation of Water Quality Characteristics and Water Quality Improvement Grade Classification of Geumho River Tributaries (금호강 수계 지류하천의 수질 특성 평가 및 수질개선 등급화 방안)

  • Jung, Kang-Young;Ahn, Jung-Min;Kim, KyoSik;Lee, In Jung;Yang, Duk Seok
    • Journal of Environmental Science International
    • /
    • v.25 no.6
    • /
    • pp.767-787
    • /
    • 2016
  • In this study, we analyzed on-site monitoring data for 15 tributaries in Geumho watersheds for 3 years (2011-2013) in order to sort out priorities on water quality characteristics and improvement. As a result of estimating contribution to contamination of the tributary rivers, Dalseocheon showed the highest load densities, despite the smallest watershed area, with 22.7% $BOD_5$, 30.7% $COD_{Mn}$, 31.3% TOC and 47.6% TP. After conducting PCA (principal component analysis) and FA (factor analysis) to analyze water quality characteristics of the tributary rivers, the first factor was classified as $COD_{Mn}$, TOC, EC, TP and $BOD_5$, the second factor as pH, Chl-a and DO, the third factor as water temperature and TN, and the fourth factor as SS and surface flow. In addition, arithmetical sum of each factor's scores based on grading criteria revealed that Dalseocheon and Namcheon were classified into Group A for their highest scores - 96 and 93, respectively -, and selected as rivers that require water environmental management measures the most. Also, water environmental contamination inspection showed that Palgeocheon had the most number of aquatic factors to be controlled: $BOD_5$, $COD_{Mn}$, SS, TOC, T-P, Chl-a, etc.

Characterizing Fluorescence Properties of Dissolved Organic Matter for Water Quality Management of Rivers and Lakes (하천 및 호소 수질관리를 위한 용존 자연유기물질 형광특성 분석)

  • Hur, Jin;Shin, Jae-Ki;Park, Sung-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.9
    • /
    • pp.940-948
    • /
    • 2006
  • Fluorescence measurements of dissolved organic matter(DOM) have the superior advantages over other analysis tools for applying to water quality management. They are simple and fast and require minimal pretreatment of samples. Fluorescence index($F_{450}/F_{500}$), synchronous spectra, and fluorescence excitation-emission matrices(EEM) of various DOM samples were investigated to discriminate autochthonous/allochthonous composition, protein-like fluorescence, fulvic-like fluorescence, humic-like fluorescence, terestrial humic-like fluorescence by comparing among the real DOM samples of different origins with the help of literature. The samples used included standard purified DOM, lake, river and wastewater treatment effluent. The relative distribution of various DOM composition was derived from the ratios of each fluorescence region. The results were very consistent with those expected from the sample properties. Allochthonous and terrestrial humic-like fluorescence were more prominent in the samples with abundant soil-derived DOM components. In addition, the protein-like fluorescence property was more pronounced in the samples where strong algal or microbial activities were expected. It was also shown that the ratio of protein-like/terrestrial humic-like fluorescence obtained from synchronous spectrum and fluorescence EEM could be used as an indicator for the evaluation of wastewater treatment on the downstream water quality of rivers and for the prediction of the degree of algal/microbial activities in lakes. It is expected that the results of this study will provide the basic information to develop the future water quality management techniques using DOM fluorescence measurements.

A Water Quality Management System at Mokhyun Stream Watershed Using GIS and RS (GIS와 RS를 이용한 목현천 수질관리 정보체계)

  • Lee, In Soo;Lee, Kyoo Seock
    • Journal of Environmental Impact Assessment
    • /
    • v.8 no.4
    • /
    • pp.1-12
    • /
    • 1999
  • The purpose of this study is to develop a Water Quality Management System(WQMS), which calculates pollutant discharge and forecasts water quality with a water pollution model. Operational water quality management requires not only controlling pollutants but acquiring and managing exact information. A GIS software, ArcView 3.1 was used to enter or edit geographic data and attribute data, and Avenue Script was used to customize the user interface. PCI, a remote sensing software, was used to derive land cover classification from 20 m resolution SPOT data by image processing. WQMS has two subsystems, database subsystem and modelling subsystem. The database subsystem consisted of watershed data from digital maps, remote sensing data, government reports, census data and so on. The modelling subsystem consisted of NSPLM(NonStorm Pollutant Load Model) and SPLM(Storm Pollutant Load Model). It calculates the amount of pollutant and predicts water quality. These two subsystems were connected through a graphic display module. This system has been calibrated for and applied to Mokhyun Stream watershed.

  • PDF