• 제목/요약/키워드: water environment

검색결과 13,273건 처리시간 0.045초

물 환경 교육에 대한 초.중등교사의 인식 연구 (A Study on Recognition of the Primary and the Secondary School Teachers on Water Environment Education)

  • 성정희;박태윤
    • 한국환경교육학회지:환경교육
    • /
    • 제23권4호
    • /
    • pp.56-69
    • /
    • 2010
  • The purpose of this research is to find out teachers' understanding and recognition about the water and the water environment education and to suggest the strategies of water education at school based on survey results. Results of the study are as follows: First, teachers had high level of water related knowledge and awareness about importance of the water environment education. However, they showed low level of environment educational efforts and environment protection behaviour in daily life. Second, they had a little chance to have the educational training for the water environment education. Third, the water environment education at schools has been made in very restricted areas such as water related scientific knowledge and water pollution. Fourth, teachers pointed out the biggest obstacle for the water environment education would be the lack of teaching materials and the second biggest one was the lack of educational facilities at schools. Based on the survey results, it was found out that in order to improve the water environment education at schools, substantial research by the teachers shall be implemented for all teachers of every subject to build up their capacity in adapting the water education to their subjects.

  • PDF

HSPF 유역모델을 이용한 낙동강유역 실시간 수문 유출 예측 (Operational Hydrological Forecast for the Nakdong River Basin Using HSPF Watershed Model)

  • 신창민;나은혜;이은정;김덕길;민중혁
    • 한국물환경학회지
    • /
    • 제29권2호
    • /
    • pp.212-222
    • /
    • 2013
  • A watershed model was constructed using Hydrological Simulation Program Fortran to quantitatively predict the stream flows at major tributaries of Nakdong River basin, Korea. The entire basin was divided into 32 segments to effectively account for spatial variations in meteorological data and land segment parameter values of each tributary. The model was calibrated at ten tributaries including main stream of the river for a three-year period (2008 to 2010). The deviation values (Dv) of runoff volumes for operational stream flow forecasting for a six month period (2012.1.2 to 2012.6.29) at the ten tributaries ranged from -38.1 to 23.6%, which is on average 7.8% higher than those of runoff volumes for model calibration (-12.5 to 8.2%). The increased prediction errors were mainly from the uncertainties of numerical weather prediction modeling; nevertheless the stream flow forecasting results presented in this study were in a good agreement with the measured data.

우리나라 물환경 기준의 개선방향 (Future Direction of Water Quality Standards in Korea)

  • 이재관;조순;정일록;황순진
    • 한국물환경학회지
    • /
    • 제22권5호
    • /
    • pp.737-747
    • /
    • 2006
  • Ministry of Environment (MOE) of Korea has been implementing the water quality management policy to focus on the control of organic matters (BOD and COD) for 28 years since 1978 when the water quality standards had been established. However, the government and the public have begun to recognize the necessity of creating the best water environment for people and aquatic life, and also formulating the various measures of water pollution, Consequently, MOE of Korea is establishing the basic plan of water environment management, with the vision of "Clean Water, Eco River 2015." The major targets of water environment management plan are to maintain ecosystem health and to protect water quality from various hazardous substances in water bodies. In order to achieve the major targets, it is essential to amend the water quality standards, which bring about the systematic management of various pollutants and healthy ecosystem. Introduction of the new techniques of water environment assessment is also prerequisite to maintain sustainable water environment. These can be accomplished under the consideration of following suggestions in environmental quality standards. First, several criteria should be complemented in water quality standards; they include the improvement of the current water quality classification system, the strengthening and supplement of relevant parameters considering human health in the standards, the introduction of biotic indices, and management standards on eutrophication. Secondly, it should be considered to introduce the biological water quality standards using biotic indices and the management standards for sediments. Lastly, it needs to introduce or develop an ecological status classification which could be used in the assessment of the water environment as a whole.

금강수계의 물환경기준과 목표수질 설정방안 (Establishment of Water Quality Standards and Water Quality Target in the Geum-River Basin)

  • 이상진
    • 한국물환경학회지
    • /
    • 제29권3호
    • /
    • pp.438-442
    • /
    • 2013
  • According to Geum-River restoration project, given conditions for management of water environment in the Geum-River were changed. Because of those changes, this study was investigated the establishment of water quality standards and water quality target in the Geum-River basin. For management of water environment in the Geum-River, the sub-basins and watersheds are newly divided and the water quality and ecosystem standards in the sub-basins are reestablished. Considering the consistency of water environment policy and legal system, the legal name of sub-basins and watersheds are unified. TMDL (total maximum daily load) should be implemented in the sub-basin where exceeds the water quality standards and the number of water pollutant among the water quality parameters which exceeds the water quality standards are extremely minimized. The water quality target of water pollutant for implementation of TMDL should be established same or higher concentration of water quality standards.

수질유해물질에 대한 수질환경기준 설정체계 (Framework for Deriving Water Quality Criteria of Toxic Substances)

  • 정윤철;고대현
    • 한국물환경학회지
    • /
    • 제21권4호
    • /
    • pp.305-313
    • /
    • 2005
  • In these days, water environment is getting threatened by a variety of toxic pollutants discharged from industries. However, environmental standards and regulations in Korea may be in straitened circumstances to protect the water environment from it. Therefore, the purpose of this review is to compare the management state of the toxic substances in water environment and to present the framework for deriving water quality criteria in USA and Japan. To conserve the water environment from the toxic pollutants more efficiently, the following considerations could be suggested in standards and regulation in Korea. Firstly, there should be consistency of regulated pollutants in drinking water quality standard, water quality standards and permissible wastewater discharge standards. Secondly, in case of deriving the water quality standards, it is required to consider the conservation of the aquatic ecosystem as well as the protection of human health. Finally, it is indispensable to make risk-based approach in management of toxic pollutants in water environment.

실시간 낙동강 흐름 예측을 위한 유역 및 수체모델 결합 적용 연구 (A Study on the Operational Forecasting of the Nakdong River Flow with a Combined Watershed and Waterbody Model)

  • 나은혜;신창민;박란주;김덕길;김경현
    • 한국물환경학회지
    • /
    • 제30권1호
    • /
    • pp.16-24
    • /
    • 2014
  • A combined watershed and receiving waterbody model was developed for operational water flow forecasting of the Nakdong river. The Hydrological Simulation Program Fortran (HSPF) was used for simulating the flow rates at major tributaries. To simulate the flow dynamics in the main stream, a three-dimensional hydrodynamic model, EFDC was used with the inputs derived from the HSPF simulation. The combined models were calibrated and verified using the data measured under different hydrometeological and hydraulic conditions. The model results were generally in good agreement with the field measurements in both calibration and verification. The 7-days forecasting performance of water flows in the Nakdong river was satisfying compared with model calibration results. The forecasting results suggested that the water flow forecasting errors were primarily attributed to the uncertainties of the models, numerical weather prediction, and water release at the hydraulic structures such as upstream dams and weirs. From the results, it is concluded that the combined watershed-waterbody model could successfully simulate the water flows in the Nakdong river. Also, it is suggested that integrating real-time data and information of dam/weir operation plans into model simulation would be essential to improve forecasting reliability.

HSPF 유역모델을 이용한 낙동강유역 실시간 수온 예측 (Operational Water Temperature Forecast for the Nakdong River Basin Using HSPF Watershed Model)

  • 신창민;나은혜;김덕길;김경현
    • 한국물환경학회지
    • /
    • 제30권6호
    • /
    • pp.673-682
    • /
    • 2014
  • A watershed model was constructed using Hydrological Simulation Program Fortran to predict the water temperature at major tributaries of Nakdong River basin, Korea. Water temperature is one of the most fundamental indices used to determine the nature of an aquatic environment. Most processes of an aquatic environment such as saturation level of dissolved oxygen, the decay rate of organic matter, the growth rate of phytoplankton and zooplankton are affected by temperature. The heat flux to major reservoirs and tributaries was analyzed to simulate water temperature accurately using HSPF model. The annual mean heat flux of solar radiation was estimated to $150{\sim}165W/m^2$, longwave radiation to $-48{\sim}-113W/m^2$, evaporative heat loss to $-39{\sim}-115W/m^2$, sensible heat flux to $-13{\sim}-22W/m^2$, precipitation heat flux to $2{\sim}4W/m^2$, bed heat flux to $-24{\sim}22W/m^2$ respectively. The model was calibrated at major reservoir and tributaries for a three-year period (2008 to 2010). The deviation values (Dv) of water temperature ranged from -6.0 to 3.7%, Nash-Sutcliffe efficiency(NSE) of 0.88 to 0.95, root mean square error(RMSE) of $1.7{\sim}2.8^{\circ}C$. The operational water temperature forecasting results presented in this study were in good agreement with measured data and had a similar accuracy with model calibration results.

서울지역 약수터에 대한 시민 여론 조사 (Survey of Citizens Public Opinion for Natural Spring Water in Seoul)

  • 김광래;길혜경;이만호;엄석원;이재영
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제16권2호
    • /
    • pp.1-5
    • /
    • 2011
  • We surveyed the citizens opinion about springs in Seoul for two years from 2008 to 2009. It was found that spring water was mostly used by citizens older than 50, and that 29.5% of citizens used purified tap water as drinking water, 27.2% of them used boiled tap water, 21.1% of them used spring water, and 12.1% of them used bottled water. Citizens who store spring water more than a day are 76.7%. Although many citizens (70.3%) knew that water quality had been tested, 40% of them didn't care about checking the certificate of water quality analysis. Once recognized that the spring water was unfit for drinking exceeded standard of drinking water, 85% of citizens would rather not use the spring water.

낙동강하구둑 수문운영에 따른 수질 영향 분석 (Analysis of the Water Quality by Various Gate Operation Effects at Nakdong Estuary Barrier)

  • 이상진;류경식;황만하;이상욱
    • 한국물환경학회지
    • /
    • 제24권6호
    • /
    • pp.651-658
    • /
    • 2008
  • Estuary barrier is a hydraulic structure constructed to supply safely water as protecting chlorine penetration of sea water. However, the barrier brings about a problem which decreases original functions of estuary because hydraulic ecology was disrupted as obstructing natural water exchange between fresh water and sea water. It is important to supply Enough fresh water in the estuary ecosystem. But it is possible to reduce the problems brought from barrier throughout efficient water gate operation of estuary barrier. It was shown in this study that the environmental effect of estuary in Nakdong river was investigated according to the control of water level. Also, the basic information about the effective water gate operation was provided. The analysis results showed that the release rate of estuary was increased about 20% as changing the operational water levels. This helps supplying fresh water durably to the mixing zone. Also, CE-QUAL-W2 model was utilized to assess water quality. The values of BOD and COD were not changed in estuary area. From the result, it was analyzed the effect of water quality according to the water gate operation was not indicated.

순환신경망 모델을 활용한 팔당호의 단기 수질 예측 (Short-Term Water Quality Prediction of the Paldang Reservoir Using Recurrent Neural Network Models)

  • 한지우;조용철;이소영;김상훈;강태구
    • 한국물환경학회지
    • /
    • 제39권1호
    • /
    • pp.46-60
    • /
    • 2023
  • Climate change causes fluctuations in water quality in the aquatic environment, which can cause changes in water circulation patterns and severe adverse effects on aquatic ecosystems in the future. Therefore, research is needed to predict and respond to water quality changes caused by climate change in advance. In this study, we tried to predict the dissolved oxygen (DO), chlorophyll-a, and turbidity of the Paldang reservoir for about two weeks using long short-term memory (LSTM) and gated recurrent units (GRU), which are deep learning algorithms based on recurrent neural networks. The model was built based on real-time water quality data and meteorological data. The observation period was set from July to September in the summer of 2021 (Period 1) and from March to May in the spring of 2022 (Period 2). We tried to select an algorithm with optimal predictive power for each water quality parameter. In addition, to improve the predictive power of the model, an important variable extraction technique using random forest was used to select only the important variables as input variables. In both Periods 1 and 2, the predictive power after extracting important variables was further improved. Except for DO in Period 2, GRU was selected as the best model in all water quality parameters. This methodology can be useful for preventive water quality management by identifying the variability of water quality in advance and predicting water quality in a short period.