• 제목/요약/키워드: water drawdown

검색결과 132건 처리시간 0.025초

Floristic Composition and Phytomass in the Drawdown Zone of the Soyangho Reservoir, Korea

  • Cho, Hyunsuk;Jin, Seung-Nam;Marrs, Rob H.;Cho, Kang-Hyun
    • Ecology and Resilient Infrastructure
    • /
    • 제5권2호
    • /
    • pp.94-104
    • /
    • 2018
  • The Soyangho Reservoir in Korea has a large drawdown zone, with an annual maximum water level fluctuation of 37 m due to dam operations to maintain a stable water supply and control flooding, especially during the monsoon period. The floristic composition, distribution and biomass of the major plant communities in the drawdown zone of the Soyangho Reservoir were assessed in order to understand their responses to the wide water level fluctuation. Species richness of vascular plants was low, and species composition was dominated by herbaceous annuals. Principal coordinates analysis using both flora and environmental data identified slope angle and the distance from the dam as important factors determining floristic composition. The species richness was low in the steep drawdown zone close to the dam, where much of the soil surface was almost devoid of vegetation. In shallower slopes, distant from the dam plant communities composed of mainly annuals were found. The large fluctuation in water level exposed soil where these annuals could establish. An overall biomass of 122 t (metric tons) Dry Matter was estimated for the reservoir, containing ca 3.6 t N (nitrogen) and ca 0.3 t P (phosphorus); the role of the vegetation of the drawdown zone in carbon sequestration and water pollution were briefly discussed.

Vertical and longitudinal variations in plant communities of drawdown zone of a monsoonal riverine reservoir in South Korea

  • Cho, Hyunsuk;Marrs, Rob H.;Alday, Josu G.;Cho, Kang-Hyun
    • Journal of Ecology and Environment
    • /
    • 제43권2호
    • /
    • pp.271-281
    • /
    • 2019
  • Background: The plant communities within reservoir drawdown zones are ecologically important as they provide a range of ecosystem services such as stabilizing the shoreline, improving water quality, enhancing biodiversity, and mitigating climate change. The aim of the study was therefore to identify the major environmental factors affecting these plant communities within the drawdown zone of the Soyangho Reservoir in South Korea, which experiences a monsoonal climate, and thereafter to (1) elucidate the plant species responses and (2) compare the soil seedbank composition along main environmental gradients. Results: Two main environmental gradients affecting the plant community structure were identified within the drawdown zone; these were a vertical and longitudinal gradient. On the vertical dimension, a hydrological gradient of flood/exposure, the annual-dominated plant community near the water edge changed to a perennial-dominated community at the highest elevation. On the longitudinal dimension from the dam to the upstream, plant species composition changed from an upland forest-edge community to a lowland riverine community, and this was correlated with slope degree, soil particle size, and soil moisture content. Simultaneously, the composition of the soil seedbank was separated along the vertical gradient of the drawdown zone, with mainly annuals near the water edge and some perennials at higher elevations. The species composition similarity between the seedbank and extant vegetation was greater in the annual communities at low elevation than in the perennial communities at higher elevation. Conclusions: The structures of plant community and soil seedbank in the drawdown zone of a monsoonal riverine reservoir were changed first along the vertical and secondly along the longitudinal gradients. The soil seedbank could play an important role on the vegetation regeneration after the disturbances of flood/exposure in the drawdown zone. These results indicate that it is important to understand the vertical and longitudinal environmental gradients affecting shoreline plant community structure and the role of soil seedbanks on the rapid vegetation regeneration for conserving and restoring the drawdown zone of a monsoonal reservoir.

경사계를 이용한 토립자 유출 관련 피해 시공 관리 사례 연구 (Case Study of Construction Management in Damage due to Soil Particle Migration Using Inclinometer Incremental Deflection)

  • 김성욱;한병원
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 춘계 학술발표회 논문집
    • /
    • pp.268-275
    • /
    • 2006
  • Excavation works of cylindrical shafts and tunnels for the construction of a variety of infrastructures have been frequently going on in the urban areas. When ground excavations of cylindrical shafts and shallow tunnels proceed in the ground condition of high water level and silt particle component, ground water drawdown involving soil particle migration causes loosening of ground around tunnels and shafts, causes settlement and deformation of ground. Damages due to ground sinking and differential settlement can occur in the adjacent ground and structures. The extent and possibility of damage relevant to ground water drawdown and soil particle migration can't be so precisely expected in advance that we will face terrible damages in case of minor carefulness. This paper introduces two examples of construction management where using incremental deformation graph of inclinometer, we noticed the possibility of soil migration due to ground water drawdown in the excavation process of vertical shaft and shallow tunnel, analysed a series of measurement data in coupled connection, properly prepared countermeasures, so came into safe and successful completion of excavation work without terrible damages. The effort of this article aims to improve and develop the technique of design and construction in the coming projects having similar ground condition and supporting method.

  • PDF

저수위시 노출된 저수지 저니 상의 식생과 구리(Cu)의 흡수 (Absorption of Copper(Cu) by Vegetation on Reservoir Sediment Exposed after Drawdown)

  • 이충우;차영일
    • 한국환경과학회지
    • /
    • 제2권2호
    • /
    • pp.123-133
    • /
    • 1993
  • Shingal reservoir is a relatively small (211ha) and shallow impoundment, and approximately 25 ha of its sediment is exposed after spring drawdown. At least 14 vascular p13n1 species germinate on the exposed sediment, but Persimria vulgaris Webb et Moq. quickly dominates the vegetation. In order to estimate the role of the vegetation in the dynamics of heavy metal pollutants in the reservoir, Cu concentration of water, fallout particles, exposed sediment, and tissues of p. vulgaris, Ivas analyzed. Cu content in reservoir water decreased from $13.10mg/m^2$ on May 15 (before dralvdown) to $3.08mg/m^2$ in June 1 (after drawdown), mainly due to the loiwering of water level. Average atmospheric deposition of Cu by fallout particles was $10.84 {\mu}g/m^2/day$. Cu content in the surface 15cm of exposed sediment decreased from $5.094g1m^2$ right after drawdown, to $0.530g/m^2$ in 41 days, which is a 89.6% decrease. Therefore up to 99.7% of Cu in the reservoir appears to exist in the sediment. only 0.3% in water If the rate of atmospheric Input by fallout particles is assumed to have been the same since 1958, when the reservoir was completed, cumulative input of Cu during the 38 years would have been $150.35mg/m^2$, which is only 3.0% of Cu content in sediment right after drawdown. Therefore, most of Cu in the Shingal reservoir must have been transported by the Shingal-chun flowing into the reservoir, Standing crop of vegetation on the exposed sediment 41 days after drawdown was $730.67g/m^2$, of which 630.91g/m2 was p. vulgaris alone, and Cu content in P vulgaris at this time was $6.612mg/m^2$. This was only 0.13% of Cu in the exposed sediment, but was 50.5% of Cu in water before drawdown, or 167% of the average annual input of Cu by atmospheric deposition. If other plants were assumed to absorb Cu to the same concentration as p. vulgaris, total amount of Cu absorbed in 41 days by vegetation on the exposed sediment is estimated to be 1913.3 g, which is a considerable contribution to the purification of the reservoir water.

  • PDF

저수위시 노출된 저수지 저니 상의 식생과 구리(Cu)의 흡수 (Absorption of Copper(Cu) by Vegetation on Reservoir Sediment Exposed after Drawdown)

  • 이충우;차영일
    • 한국환경과학회지
    • /
    • 제2권2호
    • /
    • pp.29-29
    • /
    • 1993
  • Shingal reservoir is a relatively small (211ha) and shallow impoundment, and approximately 25 ha of its sediment is exposed after spring drawdown. At least 14 vascular p13n1 species germinate on the exposed sediment, but Persimria vulgaris Webb et Moq. quickly dominates the vegetation. In order to estimate the role of the vegetation in the dynamics of heavy metal pollutants in the reservoir, Cu concentration of water, fallout particles, exposed sediment, and tissues of p. vulgaris, Ivas analyzed. Cu content in reservoir water decreased from $13.10mg/m^2$ on May 15 (before dralvdown) to $3.08mg/m^2$ in June 1 (after drawdown), mainly due to the loiwering of water level. Average atmospheric deposition of Cu by fallout particles was $10.84 {\mu}g/m^2/day$. Cu content in the surface 15cm of exposed sediment decreased from $5.094g1m^2$ right after drawdown, to $0.530g/m^2$ in 41 days, which is a 89.6% decrease. Therefore up to 99.7% of Cu in the reservoir appears to exist in the sediment. only 0.3% in water If the rate of atmospheric Input by fallout particles is assumed to have been the same since 1958, when the reservoir was completed, cumulative input of Cu during the 38 years would have been $150.35mg/m^2$, which is only 3.0% of Cu content in sediment right after drawdown. Therefore, most of Cu in the Shingal reservoir must have been transported by the Shingal-chun flowing into the reservoir, Standing crop of vegetation on the exposed sediment 41 days after drawdown was $730.67g/m^2$, of which 630.91g/m2 was p. vulgaris alone, and Cu content in P vulgaris at this time was $6.612mg/m^2$. This was only 0.13% of Cu in the exposed sediment, but was 50.5% of Cu in water before drawdown, or 167% of the average annual input of Cu by atmospheric deposition. If other plants were assumed to absorb Cu to the same concentration as p. vulgaris, total amount of Cu absorbed in 41 days by vegetation on the exposed sediment is estimated to be 1913.3 g, which is a considerable contribution to the purification of the reservoir water.

가뭄 수요대응 단기간 허용 가능한 최대 취수량 평가 (Evaluation on Maximum Irrigation Amounts of Groundwater Keeping up with a Demand During Short-term Drought)

  • 이병선;명우호;이규상;송성호
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제26권1호
    • /
    • pp.76-87
    • /
    • 2021
  • Groundwater is considered to be the best water resource to solve water shortage problems during drought periods. Even though excessive pumping (overdraft) during short-period may give an unprofitable effect on groundwater hydrology, it has a primary role to solve a lack of water resources and to maintain incomes of farmers. This study evaluated maximum irrigation amounts of groundwater to each local-government and province during drought periods. Maximum irrigation amounts of groundwater were evaluated using cumulative groundwater usage data of each local-government during normal and drought years. Maximum irrigation amounts of groundwater during drought periods would be roughly identified as approximately 1.3 times more than the exploitable amounts of groundwater resources for each local-government. Drawdown-limitation depth on groundwater levels at each monitoring well was determined by transforming the maximum irrigating amounts into degree of change on levels. Universal limitation depth of drawdown on groundwater levels was evaluated to be approximately three times of annual fluctuating range on groundwater levels for each monitoring well. Systematic response on groundwater demands with abiding by drawdown-limitation depth can attain an optimal irrigation of groundwater resources during short-term drought.

농업용 저수지 둑 높이기에 따른 제체의 공극수압 거동 (Behavior of Pore Water Pressure of Agricultural Reservoir According to Raising Embankment)

  • 이달원;이영학
    • 한국농공학회논문집
    • /
    • 제54권3호
    • /
    • pp.11-17
    • /
    • 2012
  • In this study, an experiment with large-scale model was performed according to raising embankment in order to investigate the cause of collapse by a change in water level of reservoir. Also, the settlement and pore water pressure by high water level and a rapid drawdown were compared and analyzed. After raising embankment for inclined core, there was no infiltration by leakage. For the vertical core, the pore water pressure showed a largely change by faster infiltration of pore water than in the inclined core. In a rapid drawdown, inclined core was remained stable but vertical core showed a largely change in pore water pressure. A settlement after a raising embankment showed a larger measure of settlement than before the raising embankment. The leakage quantity before a raising embankment and an inclined extension showed no leakage. Leakage in vertical extension was measured 160 $l$. From the result, a instrument system that can accurately estimate a change of pore water pressure shall be established for a rational maintenance and stabilization of raising embankment for agricultural reservoir.

댐 비상방류 설계기준 선정을 위한 수리수문학적 검토(I) (Hydraulic & Hydrologic Design Criteria for an Emergency Discharge of Reservoir (I))

  • 손광익;이재응
    • 한국수자원학회논문집
    • /
    • 제48권3호
    • /
    • pp.149-158
    • /
    • 2015
  • 비상방류시설은 안전한 댐 운영 및 유지관리를 위해서 절대적으로 필요한 시설임에도 불구하고 국내 댐의 경우 이를 고려한 설계가 이루어지지 않아 각 댐의 비상방류 대응 적정성을 판단하기 곤란한 상황이다. 특히 국내 댐의 경우 비상방류시설규모를 산정하는 기준이 일정치 않을 뿐만 아니라 대부분의 용수댐은 별도의 방류시설 조차도 없는 실정이다. 따라서 본 연구에서는 기존댐 방류시설 현황 분석, 국내외 비상방류시설 설계기준 등의 검토와 함께 국내 댐설계기준을 적용한 가상 댐체와 수어댐을 대상으로 수위에 따른 방류능 분석을 수행하였다. 또한 SEEP 프로그램 등을 활용, 수위저하 속도에 따른 제체의 사면 안정성을 검토함으로써 비상방류 시설의 적정규모 산정기준을 제시하고자 하였다. 이를 위하여 수리학적 해석을 통해 저류수심에 따른 제체에 작용하는 힘을 분석하였으며 수위저하 속도 변화에 따른 제체의 안정성을 검토하여 허용수위저하 속도 범위를 제시하였다. 수위 25% 저감은 하중을 50%까지 감소시켜 초기수위 저감이 중요한 것을 알 수 있었다. 가상 댐체는 물론 수어댐에 수위저하 속도 1 m/일을 적용하더라도 제체의 안전성은 보장됨을 확인하였다. 다만, 방류능과 방류 소요일수는 수위별 저류용량 등 저류지 특성과 밀접한 관계가 있어 초기대응을 위해서는 7~10일 이내에 저류수심의 25%를 먼저 방류시키고 나머지 방류량은 1~2개월 이내에 방류할 것을 제안하였다.

먹는샘물 제조업체의 취수량 및 감시정 관리에 관한 고찰 (A Study on the Water Withdrawal Permit Rate and Monitoring Well Management of Bottled Water Manufacturers)

  • 손두기;박승혁;정교철
    • 지질공학
    • /
    • 제29권3호
    • /
    • pp.329-337
    • /
    • 2019
  • 샘물개발허가의 유효기간은 5년이며, 연장허가를 위하여 만료 6개월 전까지 샘물환경영향조사 보고서를 첨부하여 기간 연장을 신청하여야 한다. 제출된 보고서의 심사과정에서 가장 큰 관심은 샘물 취수에 따른 지하수위 강하, 원수 수질분석 및 감시정의 모니터링 결과에 집중된다. 중생대 백악기 지역과 선캠브리아기 변성암 지역에 각각 위치하는 먹는샘물 제조업체의 취수정에 대하여 수중모터펌프의 양수능력과 양수시간을 조절하는 방법으로 수위강하량과의 상관성을 조사하였다. 양수능력을 감소시키는 방법이 매시간 동일하게 양수시간과 회복시간을 조정하는 방법보다 수위강하량을 줄이는데 효과적이었다. 또한 변성암 지역에 설치한 감시정에 대하여 pH센서의 계측자료를 분석한 결과, 설치 후 경과시간에 따라 계속 증가하여 일정한 값에 수렴하는 것으로 조사되어 관리가 어려운 pH항목을 감시정에서 제외하거나 사용자 친화적인 계측방법으로 보완이 필요할 것으로 판단된다.

대종천유역 충적대수층의 수리성 분석 및 수위강하예측에 관한 연구 (Analysis of Pumping Test Data and The Prediction of Drawdown for Daejong-Chun Area)

  • 최재진;성원모;한정상
    • 자원환경지질
    • /
    • 제26권4호
    • /
    • pp.541-549
    • /
    • 1993
  • The main goal of this paper is to determine hydraulic properties and to predict drawdown for the efficient and stable development of groundwater in the Daejong-Chun area, North of Kyungsang-Do. Based on geological survey and analysis of well logging data conducted in 1991, it is found that the type of aquifer of this area is considered to be an anisotropic unconfined aquifer with saturated thickness of 19.8 m. In order to characterize this aquifer pumping test was conducted, and the resulting drawdown data were utilized for the analysis by applying both type curve matching technique and semi-log straight line method. As a result, the average specific yield of this aquifer is estimated as 32.3%, and the average ratio of $K_H$ to $K_V$ is only 2.7, which means that gravitational effect is not significant factor for this type of aquifer. For the validation of the estimated hydraulic properties, the analytical model which was developed with Newton-Raphson iteration procedure in this study, was employed to generate the drawdown. And, the resulting drawdown was compared against actual drawdown data and it shows the excellent matches. The actual drawdown data for 9 hours of pumping were used for history matching purposes and relatively satisfactory matches were achieved in this match. Then, the model was run by using the tuned parameters that are obtained during history matching stage, and the drawdown was predicted for the next 30 years of pumping with $3,000m^3/day$ of constant pumping rate. Its result indicates that the drawdown was stabilized as 1.41 m from 20 days with $3,000m^3/day$ of constant pumping rate, which is the required amount of water to be safely supplied to this area.

  • PDF