• Title/Summary/Keyword: water distribution system reliability

Search Result 75, Processing Time 0.021 seconds

Reliability Analysis for Probability of Pipe Breakage in Water Distribution System (상수관망의 파이프 파괴확률 산정을 위한 신뢰성 해석)

  • Kwon, Hyuk Jae;Lee, Cheol Eung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.6
    • /
    • pp.609-617
    • /
    • 2008
  • Water pipes are supposed to deliver the predetermined demand safely to a certain point in water distribution system. However, pipe burst or crack can be happened due to so many reasons such as the water hammer, natural pipe ageing, external impact force, soil condition, and various environments of pipe installation. In the present study, the reliability model which can calculate the probability of pipe breakage was developed regarding unsteady effect such as water hammer. For the reliability model, reliability function was formulated by Barlow formula. AFDA method was applied to calculate the probability of pipe breakage. It was found that the statistical distribution for internal pressure among the random variables of reliability function has a good agreement with the Gumbel distribution after unsteady analysis was performed. Using the present model, the probability of pipe breakage was quantitatively calculated according to random variables such as the pipe diameter, thickness, allowable stress, and internal pressure. Furthermore, it was found that unsteady effect significantly increases the probability of pipe breakage. If this reliability model is used for the design of water distribution system, safe and economical design can be accomplished. And it also can be effectively used for the management and maintenance of water distribution system.

Application of Management Reliability Index for Water Distribution System Assessment

  • Choi, Taeho;Lee, Sewan;Kim, Dooil;Kim, Mincheol;Koo, Jayong
    • Environmental Engineering Research
    • /
    • v.19 no.2
    • /
    • pp.117-122
    • /
    • 2014
  • Indexes of safety, restoration, damage impact, and management reliability were developed to assess reliability of drinking water distribution networks (DWDNs) management. The developed indexes were applied to evaluate the reliability of the pipeline management stage during unexpected mechanical and hydraulic accidents of components. The results were used to support the decision-making process in effective management and maintenance by enhancing the administrator's system understanding and by helping to create appropriate maintenance and management policies. The results of this study indicated that application of a management reliability index to assess DWDNs reliability may help create a more effective plan for establishing DWDNs management and maintenance.

Estimation of the Reliability of Water Distribution Systems using HSPDA Model and ADF Index (HSPDA 모형 및 ADF index를 이용한 상수관망의 신뢰도 산정)

  • Baek, Chun-Woo;Jun, Hwan-Don;Kim, Joong-Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.2
    • /
    • pp.201-210
    • /
    • 2010
  • In this study, new methodology to estimate the reliability of a water distribution system using HSPDA model is suggested. In general, the reliability of a water distribution system can be determined by estimating either the ratio of the required demand to the available demand or the ratio of the number of nodes with sufficient pressure head to the number of nodes with insufficient pressure head when the abnormal operating condition occurs. To perform this approach, hydraulic analysis under the abnormal operating condition is essential. However, if the Demand-Driven Analysis (DDA) which is dependant on the assumption that the required demand at a demand node is always satisfied regardless of actual nodal pressure head is used to estimate the reliability of a water distribution system, the reliability may be underestimated due to the defect of the DDA. Therefore, it is necessary to apply the Pressure-Driven Analysis (PDA) having a different assumption to the DDA's which is that available nodal demand is proportion to nodal pressure head. However, because previous study used a semi-PDA model and the PDA model which had limited applicability depending on the characteristics of a network, proper estimation of the reliability of a water distribution system was impossible. Thus, in this study, a new methodology is suggested by using HSPDA model which can overcome weak points of existing PDA model and Available Demand Fraction (ADF) index to estimate the reliability. The HSPDA can simulate the hydraulic condition of a water distribution system under abnormal operating condition and based on the hydraulic condition simulated, ADF index at each node is calculated to quantify the reliability of a water distribution system. The suggested model is applied to sample networks and the results are compared with those of existing method to demonstrate its applicability.

A Methodology for Evaluating the Superiority between Different Valve Distributions Based on Pipe and Valve Failure Simulation (상수관로와 밸브 파괴모의를 기반으로 한 다른 제수밸브 분포간의 우열성 평가방법)

  • Jun, Hwan-Don;Park, Su-Wan
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.6 s.179
    • /
    • pp.495-502
    • /
    • 2007
  • For a water distribution system, it is necessary to evaluate the superiority between different valve distributions in order to improve the reliability of the water distribution system. In cases of placing more valves to an exiting system or building a new system, we suggest a methodology to select a proper valve distribution after various valve distributions are compared. The suggested methodology is based on simulations of pipe and valve failures to estimate failure impacts of the water distribution system due to pipe and valve failures. It is quantified by the number of customers out of service per pipe failure resulted from pipe and valve failures. To demonstrate its applicability, the methodology is applied to a real water distribution system with two different valve distributions and determines the superiority between those valve distributions. Also, customers out of service along with various valve reliabilities are estimated for those valve distributions to prove the effect of the valve reliability on the reliability of a water distribution system.

Development of the Computational Model to Evaluate Integrated Reliability in Water Distribution Network (상수관망의 통합신뢰도 산정을 위한 해석모형의 개발)

  • Park, Jae-Hong;Han, Kun-Yeon
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.1
    • /
    • pp.105-115
    • /
    • 2003
  • The computation model which evaluates combined hydraulic and mechanical reliability, is developed to analyze the integrated reliability in water distribution system. The hydraulic reliability is calculated by considering uncertain variables like water demand, hydraulic pressure, pipe roughness as random variables according to proper distribution type. The mechanical reliability is evaluated by analyzing the effect of pipe network with sequential failure of network components. The result of this study model applied to the real pipe network shows that this model can be used to simulate the uncertain factors effectively in real pipe network. Therefore, The pipe-line engineers can design and manage the network system with more quantitative reliability, through applying this model to reliable pipe network design and diagnosis of existing systems.

Vulnerability Assessment of Water Supply in Agricultural Reservoir Utilizing Probability Distribution and Reliability Analysis Methods (농업용 저수지 공급량과 수요량의 확률분포 및 신뢰성 해석 기법을 활용한 물 공급 취약성 평가)

  • Nam, Won-Ho;Kim, Tae-Gon;Choi, Jin-Yong;Lee, Jeong-Jae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.2
    • /
    • pp.37-46
    • /
    • 2012
  • The change of rainfall pattern and hydrologic factors due to climate change increases the occurrence probability of agricultural reservoir water shortage. Water supply assessment of reservoir is usually performed current reservoir level compared to historical water levels or the simulation of reservoir operation based on the water budget analysis. Since each reservoir has the native property for watershed, irrigation district and irrigation water requirement, it is necessary to improve the assessment methods of agricultural reservoir water capability about water resources system. This study proposed a practical methods that water supply vulnerability assessment for an agricultural reservoir based on a concept of probabilistic reliability. The vulnerability assessment of water supply is calculated from probability distribution of water demand condition and water supply condition that influences on water resources management and reservoir operations. The water supply vulnerability indices are estimated to evaluate the performance of water supply on agricultural reservoir system, and thus it is recommended a more objective method to evaluate water supply reliability.

Evaluation of the Reliability Improvement of a Water Distribution System by Changing Pipe (상수관의 관경변화가 상수관망의 신뢰도 향상에 미치는 영향 평가)

  • Jun, Hwan-Don;Kim, Seok-Hyun;Yoo, Do-Guen;Kim, Joong-Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.6
    • /
    • pp.505-511
    • /
    • 2009
  • When replacing deteriorated pipes, it is important to select pipe diameters of new pipes for improving the long-term reliability of a water distribution system. However, as the use of larger diameter pipes brings cost increase, it is required to evaluate the improvement of the reliability by the use of larger diameter pipes. In this study, we propose a methodology to evaluate the improvement of the reliability by the use of different pipe diameters. For this purpose, we rely on the segment-based minimum cutset method with the success mode approach to evaluate the reliability of a water distribution system and determine which pipes and their diameters will be replaced to improve the reliability using GA, After the suggested method is applied to a real water distribution system, the optimized pipe diameters produces higher reliability of the system than the current ones with the same construction cost. However, compared to the increase rate of the construction cost, the improvement of the reliability is not significant. Thus, in addition to the use the different pipe diameters, the structural modification or adding new valves to the system is necessary to improve the reliability efficiently.

A Segment-based Minimum Cutset Method for Estimating the Reliability of Water Distribution Systems (상수관망의 신뢰도 산정을 위한 Segment 기반의 Minimum Cutset 방법)

  • Jun, Hwan-Don;Park, Jae-Il;Baek, Chun-Woo;Kim, Joong-Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.9
    • /
    • pp.735-742
    • /
    • 2007
  • In this study, a methodology which is based on segments and minimum outsets to estimate the reliability of a real water distribution system efficiently and accurately is suggested. The current reliability assessment models based on minimum cutset consider a pipe as only area impacted by a pipe failure which incurs underestimation of pipe failure impact. In contrary, the suggested methodology adopts "segment" and "unintended isolation" with the hydraulic pressure failure area to define the actual service interruption area in a water distribution system due to a pipe failure, which is different from the Previous reliability estimating methodologies. In addition, a minimum cutset is defined as a single segment incurring abnormal operating conditions and the success mode approach is used to account for the probability of multiple failure combinations of minimum outsets. The model considers numbers and locations of on-off valves when the service interruption area is defined. Once the methodology is applied to a real water distribution system, it is possible to define actual service interruption areas and using the defined areas, the reliability of the water distribution system is estimated reliably, compared with the previous reliability assessment methodologies.

Applicability of reliability indices for water distribution networks (공급부하 시나리오에 따른 상수관망 신뢰도 지수의 적용성 분석)

  • Jeong, Gimoon;Kang, Doosun
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.7
    • /
    • pp.441-453
    • /
    • 2017
  • Water distribution networks (WDNs) supply drinking water to end users by maintaining sufficient water pressure for reliable water supply in normal and abnormal conditions. To design and operate WDNs in efficient way, it is required to quantify water supply ability of the network. Various reliability indices have been developed and applied in this field. Most of the reliability indices are calculated based on the energy within a network; that is, the total energy entered the network, the energy dissipated through water supply process, and the energy finally supplied at the nodes, etc. This study explains the energy composition in WDNs and introduces three well-known reliability indices developed based on the energy composition of the network. The three indices were applied to a study network under various demand loading scenarios that could occur in real-life operation practices. This study aimed to investigate the applicability of the reliability indices under abnormal scenarios and proposed to illustrate the spatial distribution of the system reliability in more intuitive way for proper responses to the abnormal situations.

Analysis of Pipe-Burst effect in Water Distribution Network (상수관망의 관로파열 영향 해석)

  • Park, Jae-Hong
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.6
    • /
    • pp.665-675
    • /
    • 2002
  • It is very closely related with the reliability of the pipe network to predict pipe burst and diminish burst effect in water distribution system. Most of the engineers have not consider pipe layout and the effect of pipe burst in conservative pipe network design. In this study, The effect of pipe burst in the network is analyzed with respect to pipe network geometric topology and the method of increasing the system reliability is presented by reducing pipe-burst effect. In existing pipe system, it is only designed to the closed loop system but in case of each pipe burst, it cannot transmit appropriate water to consumers and occurs severe hydraulic head drop in many nodes. The techniques developed in this study allow proper pipe diameter and pipe layout to pipe system through the analysis of pipe-burst effect. Thus, when each pipe is bursted, pipe system is prevented from severe pressure head drop in demand nodes and can supply stable flowrate to consumer.