• Title/Summary/Keyword: water distribution, optimization

Search Result 133, Processing Time 0.029 seconds

Methodology for determining optimal data sampling frequencies in water distribution systems (상수관망 데이터 수집의 최적 빈도 결정을 위한 방법론적 접근)

  • Hyunjun Kim;Eunhye Jeong;Kyungyup Hwang
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.37 no.6
    • /
    • pp.383-394
    • /
    • 2023
  • Currently, there is no definitive regulation for the appropriate frequency of data sampling in water distribution networks, yet it plays a crucial role in the efficient operation of these systems. This study proposes a new methodology for determining the optimal frequency of data acquisition in water distribution networks. Based on the decomposition of signals using harmonic series, this methodology has been validated using actual data from water distribution networks. By analyzing 12 types of data collected from two points, it was demonstrated that utilizing the factors and cumulative periodograms of harmonic series enables similar accuracy at lower data acquisition frequencies compared to the original signals. Type your abstract here.

Reaction coefficient assessment and rechlorination optimization for chlorine residual equalization in water distribution networks (상수도 잔류염소농도 균등화를 위한 반응계수 추정 및 염소 재투입 최적화)

  • Jeong, Gimoon;Kang, Doosun;Hwang, Taemun
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.spc1
    • /
    • pp.1197-1210
    • /
    • 2022
  • Recently, users' complaints on drinking water quality are increasing according to emerging interest in the drinking water service issues such as pipe aging and various water quality accidents. In the case of drinking water quality complaints, not only the water pollution but also the inconvenience on the chlorine residual for disinfection are included, thus various efforts, such as rechlorination treatment, are being attempted in order to keep the chlorine concentration supplied evenly. In this research, for a more accurate water quality simulation of water distribution network, the water quality reaction coefficients were estimated, and an optimization method of chlorination/ rechlorination scheduling was proposed consideirng satisfaction of water quality standards and chlorine residual equalization. The proposed method was applied to a large-scale real water network, and various chlorination schemes were comparatively analyzed through the grid search algorithm and optimized based on the suitability and uniformity of supplied chlorine residual concentration.

Optimization of Heat Transfer Area Distribution for a Hot Water Driven Absorption Chiller (중온수 흡수식 냉동기의 열전달 면적 최적화)

  • 정시영;조광운;이상수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.5
    • /
    • pp.431-438
    • /
    • 2000
  • The major irreversibilities in absorption chillers are associated with the transfer of heat into and out from the machine and irreversible process inside the machine. By modeling only external irreversibilities(endo-reversible), a model was formulated to predict the ideal performance of a single-effect absorption chiller. Its actual performance including both external and internal irreversibilities was calculated with a in-house simulation program. The optimization of heat transfer area distribution was performed for both endo-reversible cycle and actual cycle. The equation of endo-reversible modeling was found to give about 2times higher cooling capacity than the simulation program. At optimal distribution, it was found that heat transfer area of the evaporator was about 30% of total area, that of the generator was 20%, and the rest 50% was for the absorber and condenser. The system COP for endo-reversible cycle was slightly higher than that for actual cycle. In the case of LiBr-water single-effect absorption chiller, the maximum cooling capacity was obtained near the condition that LMTD is same at all heat exchangers.

  • PDF

Optimal Design of Municipal Water Distribution System (관수로 시스템의 최적설계)

  • Ahn, Tae Jin;Park, Jung Eung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.6
    • /
    • pp.1375-1383
    • /
    • 1994
  • The water distribution system problem consists of finding a minimum cost system design subject to hydraulic and operational constraints. Since the municipal water distribution system problem is nonconvex with multiple local minima, classical optimization methods find a local optimum. An outer flow search - inner optimization procedure is proposed for choosing a better local minimum for the water distribution systems. The pipe network is judiciously subjected to the outer search scheme which chooses alternative flow configurations to find an optimal flow division among pipes. Because the problem is nonconvex, a global search scheme called Stochastic Probing method is employed to permit a local optimum seeking method to migrate among various local minima. A local minimizer is employed for the design of least cost diameters for pipes in the network. The algorithm can also be employed for optimal design of parallel expansion of existing networks. In this paper one municipal water distribution system is considered. The optimal solutions thus found have significantly smaller costs than the ones reported previously by other researchers.

  • PDF

Development of multi-objective optimal design approach for water distribution systems based on water quality-hydraulic constraints according to network characteristic (네트워크 특징에 따른 수질-수리 제약조건 기반 상수도관망 다목적 최적 설계 기술개발)

  • Ko, Mun Jin;Choi, Young Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.1
    • /
    • pp.59-70
    • /
    • 2022
  • Water distribution systems (WDSs) are a representative infrastructure injecting chlorine to disinfect the pathogenic microorganisms and supplying water from sources to consumers. Also, WDSs prescribe to maintain the usual standard (0.1-4.0 mg/L) of residual chlorine. However, the user's usage pattern, water age, network shape, and type affect the hydraulic features (i.e. nodal pressure, pipe velocity) and water quality features (i.e., the residual chlorine concentration). Therefore, this study developed an optimization approach for optimizing WDSs considering water quality-hydraulic factors using Multi-objective Harmony Search (MOHS). The design cost and the system resilience were applied as the design objective functions, and the nodal pressure and the concentration of residual chlorine are used as constraints. The derived optimal designs through this approach were analyzed according to network characteristics such as the network shapes and type. These optimal designs can meet the safety of economic and water quality aspects to increase user acceptance.

OPTIMAL DESIGN FOR CAPACITY EXPANSION OF EXISTING WATER SUPPLY SYSTEM

  • Ahn, Tae-Jin;Lyu, Heui-Jeong;Park, Jun-Eung;Yoon, Yong-Nam
    • Water Engineering Research
    • /
    • v.1 no.1
    • /
    • pp.63-74
    • /
    • 2000
  • This paper presents a two- phase search scheme for optimal pipe expansion of expansion of existing water distribution systems. In pipe network problems, link flows affect the total cost of the system because the link flows are not uniquely determined for various pipe diameters. The two-phase search scheme based on stochastic optimization scheme is suggested to determine the optimal link flows which make the optimal design of existing pipe network. A sample pipe network is employed to test the proposed method. Once the best tree network is obtained, the link flows are perturbed to find a near global optimum over the whole feasible region. It should be noted that in the perturbation stage the loop flows obtained form the sample existing network are employed as the initial loop flows of the proposed method. It has been also found that the relationship of cost-hydraulic gradient for pipe expansion of existing network affects the total cost of the sample network. The results show that the proposed method can yield a lower cost design than the conventional design method and that the proposed method can be efficiently used to design the pipe expansion of existing water distribution systems.

  • PDF

Prediction of Chlorine Concentration in a Pilot-Scaled Plant Distribution System (Pilot 규모의 모의 관망에서의 염소 농도 예측)

  • Kim, Hyun Jun;Kim, Sang Hyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.6
    • /
    • pp.861-869
    • /
    • 2012
  • The chlorine's residual concentration prevents the regrowth of microorganism in water transport along the pipeline system. Precise prediction of chlorine concentration is important in determining disinfectant injection for the water distribution system. In this study, a pilot scale water distribution system was designed and fabricated to measure the temporal variation of chlorine concentration for three flow conditions (V = 0.88, 1.33, 1.95 m/s). Various kinetic models were applied to identify the relationship between hydraulic condition and chlorine decay. Genetic Algorithm (GA) was integrated into five kinetic models and time series of chlorine were used to calibrate parameters. Model fitness was compared by Root Mean Square Error (RMSE) between measurement and prediction. Limited first order model and Parallel first order showed good fitness for prediction of chlorine concentration.

Manganese treatment to reduce black water occurrence in the water supply

  • Kim, Jinkeun
    • Environmental Engineering Research
    • /
    • v.20 no.3
    • /
    • pp.230-236
    • /
    • 2015
  • 26 multi-regional water treatment plants (WTPs) were investigated, to determine the characteristics of manganese (Mn) concentration and removal in Korea. Mn concentrations of raw water in most WTPs were higher than the drinking water standard (i.e., 0.05 mg/L); thus, proper removal of Mn at the WTPs is needed. Mn concentration was generally higher in lakes than rivers due to seasonal lake turnovers. The Mn concentrations of treated water at 26 WTPs in 2012 were less than 0.05 mg/L, due to strict law enforcement and water treatment processes optimization. However, before 2010, those concentrations were more than 0.05 mg/L, which could have led to an accumulation of Mn oxides in the distribution system. This could be one of the main reasons for black water occurrence. Therefore, regular monitoring of Mn concentration in the distribution system, flushing, and proper Mn removal at WTPs are needed, to supply clean and palatable tap water.

MANAGEMENT OF WATER DISTRIBUTION SYSTEMS USING OPTIMIZATION MODEL (관망관리를 위한 최적화 모형의 구성)

  • BeumHeeLee
    • Journal of the Korean Geophysical Society
    • /
    • v.4 no.3
    • /
    • pp.205-217
    • /
    • 2001
  • Time pasges could deteriorate the flow ability and hold the folw in the water distribution facilities because of their erosion and breakdown. It is necessary that the study to determine the optimal change time and the improvement plan for the continuous management using optimization methods or decision support systems. But, the present study tendency only aware the changes of hydraulie characteristics without industrial management plans. This study shows the pipe replacement program in these two concepts and the elementary process to apply it to Daejeon city.

  • PDF

Management of Water Distribution Systems Using Optimization Model (관망관리를 위한 최적화 모형의 구성)

  • Lee, Beum-Hee
    • The Journal of Engineering Research
    • /
    • v.4 no.1
    • /
    • pp.137-149
    • /
    • 2002
  • Time passages could deteriorate the flow ability and hold the flow in the water distribution facilities because of their erosion and breakdown. It is necessary that the study to determine the optimal change time and the improvement plan for the continuous management using optimization methods or decision support systems. But, the present study tendency only aware the changes of hydraulic characteristics without industrial management plans. This study shows the pipe replacement program in these two concepts and the elementary process to apply it to Daejeon city.

  • PDF