• Title/Summary/Keyword: water diffusion coefficient

Search Result 278, Processing Time 0.021 seconds

The Analytical Derivation of the Fractal Advection-Diffusion Equation for Modeling Solute Transport in Rivers (하천 오염물질의 모의를 위한 프랙탈 이송확산방정식의 해석적 유도)

  • Kim, Sang-Dan;Song, Mee-Young
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.11
    • /
    • pp.889-896
    • /
    • 2004
  • The fractal advection-diffusion equation (ADE) is a generalization of the classical AdE in which the second-order derivative is replaced with a fractal order derivative. While the fractal ADE have been analyzed with a stochastic process In the Fourier and Laplace space so far, in this study a fractal ADE for describing solute transport in rivers is derived with a finite difference scheme in the real space. This derivation with a finite difference scheme gives the hint how the fractal derivative order and fractal diffusion coefficient can be estimated physically In contrast to the classical ADE, the fractal ADE is expected to be able to provide solutions that resemble the highly skewed and heavy-tailed time-concentration distribution curves of contaminant plumes observed in rivers.

Evaluation of Apparent Chloride Diffusion Coefficient of Fly Ash Concrete by Marine Environment Exposure Tests (해양 환경 폭로 시험을 통한 FA 콘크리트의 겉보기 염화물 확산계수 평가)

  • Yoon, Yong-Sik;Lim, Hee-Seob;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.3
    • /
    • pp.119-126
    • /
    • 2019
  • In case of RC(Reinforced Concrete) structures which are constructed in coastal areas, chloride ions in sea water corrode the steel rebar in concrete. Especially in coastal areas, RC structures are affected by not only immersion of sea water, but also tidal of sea water and airborne chloride ions. In this study, marine environment exposure tests are conducted, considering 3 types of exposure environments(immersion zone, tidal zone, splash zone) and the exposure periods of 180 days, 365 days, and 730 days. Also, the concrete mixtures for this study are established, considering 3 levels of W/B(Water to Binder) ratio(0.37, 0.42, 0.47) and 2 levels of substitution rate of Fly ash(0 %, 30 %). In all exposure environments, Fly ash concrete has lower apparent chloride diffusion coefficients than OPC concrete. It is thought that fly ash's pozzolan reaction improves chloride resistance of concrete. Fly ash concrete has up to 63.5 % of decreasing rate in 180 days of exposure and up to 55.8 % of decreasing rate in 730 days of exposure, based on diffusion coefficients of OPC concrete. As a result of evaluation about effects of exposure environments, apparent chloride diffusion coefficients of fly ash concrete are evaluated in order of tidal zone, immersion zone, and splash zone. In tidal zone, It is thought that repeated cycles of wetting and drying of sea water cause the diffusion of chloride ions rapidly.

Heat and mass transfer analysis in air gap membrane distillation process for desalination

  • Pangarkar, Bhausaheb L.;Sane, Mukund G.
    • Membrane and Water Treatment
    • /
    • v.2 no.3
    • /
    • pp.159-173
    • /
    • 2011
  • The air gap membrane distillation (AGMD) process was applied for water desalination. The main objective of the present work was to study the heat and mass transfer mechanism of the process. The experiments were performed on a flat sheet module using aqueous NaCl solutions as a feed. The membrane employed was hydrophobic PTFE of pore size 0.22 ${\mu}m$. A mathematical model is proposed to evaluate the membrane mass transfer coefficient, thermal boundary layers' heat transfer coefficients, membrane / liquid interface temperatures and the temperature polarization coefficients. The mass transfer model was validated by the experimentally and fitted well with the combined Knudsen and molecular diffusion mechanism. The mass transfer coefficient increased with an increase in feed bulk temperature. The experimental parameters such as, feed temperature, 313 to 333 K, feed velocity, 0.8 to 1.8 m/s (turbulent flow region) were analyzed. The permeation fluxes increased with feed temperature and velocity. The effect of feed bulk temperature on the boundary layers' heat transfer coefficients was shown and fairly discussed. The temperature polarization coefficient increased with feed velocity and decreased with temperature. The values obtained were 0.56 to 0.82, indicating the effective heat transfer of the system. The fouling was observed during the 90 h experimental run in the application of natural ground water and seawater. The time dependent fouling resistance can be added in the total transport resistance.

Evaluation of Parameters in Hydrodynamic Model (동수역학모형의 매개변수 산정)

  • Yun, Tae-Hun;Lee, Jong-Uk;Jagal, Sun-Dong
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.1
    • /
    • pp.39-50
    • /
    • 2000
  • Generally speaking, a hydrodynamic model needs a friction coefficient (Manning coefficient or Chezy coefficient) and eddy viscosity. For numerical solution the coefficients are usually determined by recursive calculations. The eddy viscosity in numerical model plays physical diffusion in flow and also acts as numerical viscosity. Hence its value has influence on the stability of numerical solution and for these reasons a consistent evaluation procedure is needed. By using records of stage and discharge in the downstream reach of the Han river, I-D models (HEC-2 and NETWORK) and 2-D model (SMS), estimated values of Manning coefficient and an empirical equation for eddy viscosity are presented. The computed results are verified through the recorded flow elevation data.n data.

  • PDF

Behavior Characteristics of Density Currents Due to Salinity Differences in a 2-D Water Tank

  • Lee, Woo-Dong;Mizutani, Norimi;Hur, Dong-Soo
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.4
    • /
    • pp.261-271
    • /
    • 2018
  • In this study, a hydraulic model test, to which Particle Image Velocimetry (PIV) system applied, was used to determine the hydrodynamic characteristics of the advection-diffusion of saltwater according to bottom conditions (impermeable/permeability, diameter, and inclination) and the difference of the initial salt. Considering quantitative and qualitative results from the experiment, the characteristics of the density current were discussed. As an experimental result, the advection-diffusion mechanism of salinity was examined by the shape of saltwater wedge and the flow structure of density currents with various bottom conditions. The vertical salt concentration obtained from the experiment was used as quantitative data to calculate the diffusion coefficient that was used in the numerical model of the advection-diffusion of saltwater.

An Experimental Study of Verification for PEMFC's 1-Dimensional Simulation (PEMFC 1차원 시뮬레이션 검증을 위한 실험적 연구)

  • Moon, Cheor-Eon;Ahn, Seong-Yool;Yang, Jang-Sik;Choi, Gyung-Min;Kim, Duck-Jool
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.191-195
    • /
    • 2007
  • In this study, we estimated the performance of PEMFC's unit cell as changing operating temperature in different inlet humidity condition at cathode side but anode dry, and tried to match experimental results with 1-dimensional simulation. We used $Nafion^{\circledR}112$ membrane and a self-manufactured PEMFC with active area of $25cm^{2}$ was used in this study. The range of operating temperature was $40{\sim}70^{\circ}C$ and oxygen through bubbled humidity chamber was supplied $0{\sim}80$% humidity condition as changing water temperature in humidity chamber. For figuring out governing equations, represent water contents in electrolyte membrane, the linear forward difference method was applied about time progress and quadratic central difference method was used about space progress. It was assumed that pressure terms were linearly changed due to thin electrolyte membrane. In low operating temperature condition, $40{\sim}60^{\circ}C$, increasing temperature rarely effected cell performance but we can see performance drop at $70^{\circ}C$. By modifying Henrry's constant and/or diffusion coefficient, the modified one-dimensional model was accomplished for calculation.

  • PDF

Distribution Model Based on Computer Simulation for Internal Temperature and Moisture Content in Press Drying of Tree Disks (원판(圓板)의 열판건조(熱板乾燥)에서 컴퓨터 시뮬레이션에 의한 내부온도(內部溫度)와 함수율(含水率) 분포모형(分布模型))

  • Yeo, Hwan-Myeong;Jung, Hee-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.61-70
    • /
    • 1994
  • This study was executed to find the applicability of press drying of tree disk by investigating the shrinkage and drying defect and to form appropriate model by comparing the actual moisture content(MC) and internal temperature in respect of drying time with calculated values based computer simulation to which was applied finite difference method. In press drying disk, heating period, constant drying rate period maintained plateau temperature at 100$^{\circ}C$ and falling drying rate period were significantly distinguished. Actual MC and internal temperature were analogous to those calculated at comparing points. Heat transfer model formed by Fourier's law using specific heat of moist wood and conduction coefficient considering fractional volume of each element of wood cell wall, bound water, free water and air showed applicability as basic data to developing heat expansion, shrinkage and drying stress during press drying. Also mass transfer model formed by Fick's diffusion law using water vapor diffusion coefficient showed applicability. Longitudinal shrinkage was developed by pressure of hot press and tangential shrinkage was restrained by hygrothermal recovery. The heart check, surface check and ring failure were occurred differently in species, but V-shaped crack didn't develop.

  • PDF

Durability performance of concrete containing Saudi natural pozzolans as supplementary cementitious material

  • Al-Amoudi, Omar S. Baghabra;Ahmad, Shamsad;Khan, Saad M.S.;Maslehuddin, Mohammed
    • Advances in concrete construction
    • /
    • v.8 no.2
    • /
    • pp.119-126
    • /
    • 2019
  • This paper reports an experimental investigation conducted to evaluate the durability performance of concrete mixtures prepared utilizing blends of Type I Portland cement (OPC) and natural pozzolans (NPs) obtained from three different sources in Saudi Arabia. The control concrete mixture containing OPC alone as the binder and three concrete mixtures incorporating NPs were prepared keeping water/binder ratio of 0.4 (by weight), binder content of $370kg/m^3$, and fine/total aggregate ratio of 0.38 (by weight) invariant. The compressive strength and durability properties that included depth of water penetration, depth of carbonation, chloride diffusion coefficient, and resistance to reinforcement corrosion and sulfate attack were determined. Results of this study indicate that at all ages, the compressive strength of NP-admixed concrete mixtures was slightly less than that of the concrete containing OPC alone. However, the concrete mixtures containing NP exhibited lower depth of water penetration and chloride diffusion coefficient and more resistance to reinforcement corrosion and sulfate attack as compared to OPC. NP-admixed concrete showed relatively more depth of carbonation than OPC when subjected to accelerated carbonation. The results of this investigation indicates the viability of utilizing of Saudi natural pozzolans for improving the durability characteristics of concrete subjected to chloride and sulfate exposures.

Influence of Porosity on the CO2 Diffusion Characteristic in Concrete (공극률을 고려한 콘크리트 중의 이산화탄소 확산특성에 관한 연구)

  • Oh, Byung-Hwan;Jung, Sang-Hwa;Lee, Myung-Kue
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.3
    • /
    • pp.443-453
    • /
    • 2003
  • The diffusivity of carbon dioxide in concrete is very important in that it directly affects the degree of carbonation in concrete structures. The purpose of the present study is to explore the diffusivity of carbon dioxide and to derive a realistic equation to estimate the diffusion coefficient of carbon dioxide in concrete. For this purpose, several series of concrete specimens have been tested. Major test variables were the water-cement ratios. The total porosities and the diffusion coefficients of carbon dioxide were measured for the specimens. The present study indicates that the measured porosities agree well with the calculated ones. The effects of porosity and relative humidity on the diffusion coefficient of carbon dioxide were examined. A prediction equation to estimate the diffusion coefficient of carbon dioxide was derived and proposed in this study. The proposed equation shows reasonably good correlation with test data on the $CO_2$ diffusion coefficient of concrete

The effects of matrix aging and residual stress changes on $Avimid^{(R)}$ K3B/IM7 laminates (수지 노화와 잔류응력 변화가 $Avimid^{(R)}$ K3B/IM7 복합재 적층에 미치는 영향)

  • Kim, Hyung-Won
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.8 no.3 s.22
    • /
    • pp.124-130
    • /
    • 2005
  • In this paper, the effects of matrix hygrothermal aging and residual stress changes on $Avimid^{(R)}$ K3B/IM7 laminates in $80^{\circ}C$ water were studied. The factors causing the $80^{\circ}C$ water to degradation of the laminates could be the degradation of the matrix toughness, the change in residual stresses. After 500 hours fully saturated aging of the neat resin, the weight gain was 1.55% increase with the diffusion coefficient $7{\times}10^{-6}m^2/s$ and the fracture toughness was decreased about 41%. After 100 hours fully saturated aging of the $[+45/0/-45/90]_s$ K3B/IM7 laminates in $80^{\circ}C$ water, the weight gain was 0.41% increase with the diffusion coefficient $1{\times}10^{-6}m^2/s$ and the loss of the microcracking fracture toughness was 43.8% of the original toughness. To see whether the residual stress influenced the fracture toughness, two ply $[90^{\circ}/0^{\circ}]$ laminates were put in $80^{\circ}C$ water from 2 hours to 8 hours. The changes in residual stress in 8 hours are less than 3MPa. Because the 3MPa change is not sufficient to degrade the laminates, the main factor to degrade the microcracking fracture toughness was the degradation of the matrix fracture toughness.