• Title/Summary/Keyword: water desalination

Search Result 333, Processing Time 0.018 seconds

Inclusive Impact Index "Triple I" for Assessing Ocean Utilization Technologies (해양이용기술 평가를 위한 포괄적 영향지수 "트리플 I")

  • Otsuka, Koji
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.15 no.2
    • /
    • pp.118-125
    • /
    • 2012
  • World population has increased rapidly following the industrial revolution, reaching 7 billion in 2012. Several forecasts estimate that this number will rise to about 8 billion in 2025. Improvements of living standards in developing nations have also raised resource and energy demands worldwide. In consequences, human beings have faced many global and urgent problems, such as global warming, water and food shortages, resource and energy crises, and so on. Many ocean utilization technologies for avoiding or reducing such big problems have been developed, for examples $CO_2$ ocean sequestration, seawater desalination, artificial upwelling, deepwater mining, and ocean energies. It is important, however, to assess such technologies from the viewpoints of sustainability and public acceptancy, since the aims of those technologies are to develop sustainable social systems rather than conventional ones based on fossil resources. Inclusive Marine Pressure Assessment and Classification Technology Research Committee (generally called IMPACT Research Committee) of Japan Society of Naval Architects and Ocean Engineers, has proposed Inclusive Impact Index "Triple I" as an indicator, which can predict both environmental sustainability and economical feasibility, in order to assess the ocean utilization technologies from the viewpoints of sustainability and public acceptancy. This index was considered by combining Ecological Footprint and Environmental Risk Assessment. The Ecological Footprint and the Environmental Risk Assessment are introduced in the first part of this paper. Then the concept and the structure of the Triple I are explained in the second part of this paper. Finally, the economy-ecology conversion factor in Triple I accounting is considered.

Influence of pH and Ionic Strength on Treatment of Radioactive Boric Acid Wastes by Forward Osmosis Membrane (정삼투막에 의한 붕산함유 방사성 폐액 처리를 위한 pH 및 이온강도 영향)

  • Choi, Hye-Min;Hwang, Doo-Seong;Lee, Kune-Woo;Moon, Jei-Kwon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.11 no.3
    • /
    • pp.193-198
    • /
    • 2013
  • In general, boron recovery of 40-90% could be achieved by Reverse Osmosis (RO) membranes in neutral pH condition. As an emerging technology, Forward Osmosis (FO) membrane has attracted growing interest in wastewater treatment and desalination. The objective of this study is to evaluate the possibility of the boron removal in radioactive liquid waste by FO. In this study, the performance of FO was investigated to remove boron in the simulated liquid waste as the factors such as pH, osmotic pressure, ionic strength of solution, etc. The pH of feed solution is a major operating parameter which strongly influences to the permeation of boron and more than 80% of boron content can be separated when conducted at pH values less than 7. The water flux is not influenced but the boron flux and permeation rate tends to decrease in the low salt concentration of 1,000 mg/L. The boron flux increases linearly, but the permeation ratio of reducing boron is nearly constant even with changes in the draw solution concentration.

Preparation of Polysulfone Composite Ultrafiltration Hollow Fiber Membranes Incorporating Nano-size Fumed Silica with Enhanced Antifouling Properties (나노 크기의 Fumed Silica가 함유된 Polysulfone 한외여과 중공사막 제조 및 내오염성 분석)

  • Kang, Yesol;Lim, Joohwan;Kim, In S.
    • Membrane Journal
    • /
    • v.28 no.6
    • /
    • pp.379-387
    • /
    • 2018
  • This study was conducted to improve the membrane characteristics and performance by increasing hydrophilicity by adding additives to the ultrafiltration polysulfone (PSf) hollow fiber membrane. The mixed matrix membranes (MMMs) were prepared by dispersing 15 nm of fumed silica (FS) in the spinning solution at 0.1, 0.3 and 0.5 wt%. SEM analysis was carried out to confirm the cross-section and surface condition. It was confirmed that mean pore radius of the hollow fiber increased by 4 nm as FS was added. In addition, contact angle measurement was carried out for the hydrophilicity analysis of hollow fiber membranes, and it was confirmed that the hydrophilicity of MMMs were increased by adding of FS. In the case of water permeability, the membrane including FS showed 91~96 LMH and showed 5~11% more increase than PSf membrane. In the antifouling performance test, relative flux reduction ratios of FS mixed hollow fiber membranes were lower than that of PSf membranes, and it was confirmed that increase of hydrophilicity hinders adsorption of hydrophobic BSA on the membrane surface.