• Title/Summary/Keyword: water current

Search Result 4,426, Processing Time 0.028 seconds

Study on Current and Water Quality Characteristics in Yongil Bay (영일만내의 유동과 수질특성에 관한 연구)

  • 김헌덕;김종인;류청로
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.4
    • /
    • pp.28-37
    • /
    • 2001
  • The water quality in Yongil Bay is getting worse due to the sewage and the waste water from the surrounding industrial complex. The study aims to simulate the current system that is necessary to build ecosystem model for the optium water quality control and clarify the correlation of current system characteristics with water quality in Yongil Bay. To clarify the characteristics of coastal water movement system and verify the applicability of the 3-D model, the current system was simulated using 3-D model baroclinic model which considers tidal current and density effects. As the results of numerical experiments, it is proved the 3-D model is the most applicable on appearing the current system of the stratificated Yongil Bay difference of density. Form the results of simulation considered tidal current only, it can be clarified that the water body flows in the inner bay through the bottom layer and flows out the outer bay through the surface layer in Yongil Bay. And the fresh water from the Hyongsan river and the thermal discharge form POSCO have a little effect on the current system in Yongil Bay, but the diffusion of heat and salt has an important effect upon the formation of the density stratification of the water quality distribution is closely related with the current structure characteristics as well as the tidal residual current system in Yongil Bay.

  • PDF

Study on Current and Water Quality Characteristics in Yongil Bay (영일만내의 유동과 수질특성에 관한 연구)

  • 김헌덕;김종인;류청로
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.10a
    • /
    • pp.246-252
    • /
    • 2000
  • The water quality in Yeongil Bay is getting worse due to the sewage and the waste water from the surrounding industrial complex The study aims to simulate the current system that is necessary to built ecosystem model for the optium water quality control and clarify the correlation of current system characteristics with water quality in Yongil Bay. To clarify the characteristics of coastal water movement system and verify the applicability of the 3-D model, the current system was simulated using 3-D baroclinic model considered tidal current and density effects. As the results of numerical experiments, it is proved the 3-D model is the most appliable on the Yongil Bay where current flows slowly and the flow direction is varied by depths. From the results of simulation considered tidal current only, It am be clearly said the water in Yongil Bay flows in through the surface layer and flows out through the bottom layer. And the fresh water from the Hyongsan river and the heated discharge from POSCO have little effect on the current structure in Yonggil Bay, but have and important effect upon the density structure by diffusion of heat and salt. And the water quality distribution is closely related with the current structure characteristics as well as the tidal residual current system.

  • PDF

On the Origin of the Tsushima Current Water

  • Lim, Du Byung
    • 한국해양학회지
    • /
    • v.6 no.2
    • /
    • pp.85-91
    • /
    • 1971
  • The origin of the Tsushima Current water was investigated with a discussion on the western North Pacific Central Water. The Tsushima Current water is formed by the mixing of the Kuroshio surface water and the East China Sea water. The area where the mixing takes place remarkably is found to be the marginal region of the continental shelf of the East China Sea at the depth from 100 to 200 meters.

  • PDF

The Characteristics of Tidal Current and Water Mass in the Narrow Channel 1. Tidal Current and Water mass in the Chungmu Channel (협수로의 수리 특성과 수괴구조 1. 충무수로의 조류와 수괴구조)

  • Park, Byung-Soo
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.13 no.2
    • /
    • pp.168-177
    • /
    • 2001
  • The flow pattern and water mass structure in the Chungmu channel were investigated using the field observations during June and July, 2001. The currents in the channel may be regarded as a hydraulic current decided by difference of tide levels between two sides in the channel. The strongest current in the channel occurs around in high water and low water. The coefficient C to be determined the characteristics of velocity in the channel was obtained from an equation, $u=C{\sqrt{2gh}}$ and ranges from 0.37 to 0.65 in the Chungmu Channel at the spring tide and from 0.23 to 0.37 at the neap tide. Eastward tidal transport is usually larger than that of westward transport in Chungmu the Channel. Sea water exchange rates are 39.2% in spring tide and 20.5% in neap tide respectively. The water mass structure in the channel is changed by the speed of the tidal current. The water mass is well mixed at the high water when the current is strong and is stratified at slack water when the current is weak.

  • PDF

Observation of local water content and current density in the PEMFC system (고분자 전해질 연료전지의 전류밀도와 국소 함수량 관찰)

  • Ko, Dong-Soo;Moon, Cheor-Ron;Choi, Gyung-Min;Kim, Duck-Jool;Jung, Ji-Hwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.69-72
    • /
    • 2008
  • The local water contents and water transfer characteristics in the PEMFC system were investigated by numerical simulations and experiments. The performance of a lab-scale PEMFC is measured for fully humidified gases conditions and non-humidified ones. In order to observe the local water contents and water transfer characteristics inside PEMFC, the numerical simulation using CFD module on STAR-CD(es-pemfc) were conducted. The results show that the water content was increased as increasing current density, whereas it was decreased in high current density region. Then there was close correlation between high water content and internal temperature inside of MEA, and high current density was observed when internal temperature was dramatically increased.

  • PDF

Analysis of Water Storage Tank Flowfield using Computational Fluid Dynamics (CFD) Simulation (전산유체역학(CFD)을 이용한 저수조 내부 유동장 해석)

  • Choi, Yeon-Woo;Han, Min-Su;Song, Jun-Hyuck;Wang, Chang-Keun
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.2
    • /
    • pp.173-182
    • /
    • 2018
  • Reservoirs, facilities to store water, are being used in several fields for their ability to hold back a large quantity of water for a long time before the water is actually used. However, at the same time, the reservoirs are considered to have a flaw: the longer they store water, the more the quality of water in these reservoirs deteriorates. Further, when the reservoirs are large, they are more likely to have dead-water regions in out-of-the way spots far from either an in-current or an ex-current canal. This study conducted a Computational Fluid Dynamic (CFD) simulation and tried to figure out the internal flow inside each of the reservoirs with different in-current canals built by the multiple hoe screw nozzle method and the drop in-current method. The drop in-current method is more frequently used. According to the analysis of the internal flow inside each reservoir with the different methods applied, we found that the reservoir with the drop in-current canal would have two rotary currents in the lower region of the reservoir and that the velocity of flow would decrease. For a reservoir with the screw nozzle method, a single rotary current occurred, and inside the reservoir, regardless of height, the current turned out to flow in a regular manner.

Ocean Current Power Generation using sea water discharged from Turbine Generator and Gate Channel of Tidal Power Plant (조력발전소의 수차발전기 및 수문도수로 방출수를 이용한 해류발전)

  • Jang, Kyung-Soo;Lee, Jung-Eun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.180-183
    • /
    • 2008
  • This paper is about the ocean current power generation using sea water incoming into the lake surrounded by barrages and sea water discharged from a dam made of artificial structures. In operation of a tidal power plant, the sea water discharged from a turbine structure and a gate structure of a tidal power plant is faster than the tidal current caused by tides in nature and has better characteristics than that to run ocean current turbines. It is shown that the sea water discharged after generating electricity through a turbine generator of a tidal power plant and the sea water discharged from a gate structure of a tidal dam still have kinetic energy high enough to run an ocean current turbine and produce valuable electricity.

  • PDF

Current-voltage Characteristics of Water-adsorbed Imogolite Film

  • Park, Jae-Hong;Lee, Jung-Woo;Chang, Sun-Young;Park, Tae-Hee;Han, Bong-Woo;Han, Jin-Wook;Yi, Whi-Kun
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.5
    • /
    • pp.1048-1050
    • /
    • 2008
  • Electric current flow was observed through imogolite film when imogolite ($(HO)_3Al_2O_3SiOH$) was exposed to water molecules and connected to external electrodes. Current flow was due to the bound water on the surface of imogolite. Current flow increased as the pH of the water decreased. The current-voltage (I-V) measurements from a field effective transistor (FET) using $H_2O$/imogolite film revealed that the current carrier in $H_2O$/ imogolite had p-type characteristics, i.e. the carrier was probably $H^+$. The possible mechanism for current transportation in imogolite/water was also suggested in this paper.

Observation of Reservoir Current Using Drifter (The Case Study of Yongdam Reservoir) (Drifter를 이용한 저수지 수리거동 조사 (용담댐을 중심으로))

  • Lee, Yo-Sang;Koh, Deok-Koo;Chae, Hyo-Sok;Han, Kyung-Min
    • Korean Journal of Ecology and Environment
    • /
    • v.45 no.2
    • /
    • pp.200-209
    • /
    • 2012
  • The current of the water body is very important information for the water quality management on reservoirs. It is applied to hydraulics and water quality model for simulation. In this regard, the current characteristic of water body is the basic information that can be used to predict various conditions. However, it is very slow flowing and is affected by the reservoir operations and external factors. As such, an accurate measurement of the current is a difficult problem. In order to measure the water current, we constructed a drifter. According to the result of flow survey at Yongdam reservoir, 5m and 10 m depth layer flow was investigated from the upstream to the downstream, during a flood period. Maximum flow rate of 5 m depth is 13.8 cm $sec^{-1}$ and 10 m depth shows 4 cm $sec^{-1}$, respectively. But 2m depth shows a backward flow and maximum flow rate is 4 cm $sec^{-1}$. Density currents flow plays the role of back flow in reservoirs. Flow velocity in the reservoir was measured in the range of 1~2 cm $sec^{-1}$, at normal flow season, and the flow direction were different for each survey. This phenomenon occurs because the reservoir volume is very large, compared to the inflow and outflow volume.

Characteristics of Water Temperature Inversion Observed in a Region West of Jeju Island in April 2015 (2015년 4월에 제주 서부해역에서 발생한 수온역전층 특성)

  • Kim, Seong Hyeon
    • Ocean and Polar Research
    • /
    • v.42 no.2
    • /
    • pp.97-113
    • /
    • 2020
  • In-situ observations were carried out in April 2015 to investigate the occurrence of water temperature inversion in a region west of Jeju Island. Analysis of in-situ in the western part of Jeju island showed that cold water moved to the southeast from the surface to the middle layer and warm water moved from the middle to the lower layer of the northwest direction. The water temperature inversion occurred at 84 stations (63.1%) out of 133 stations. At the boundary of the water temperature inversion layer, it was formed in the middle layer and disappeared. In the strongly appearing, it started from the middle layer to the lower layer. The shape of the water temperature inversion layer was different. As a result of horizontal water temperature slope analysis of the water temperature inversion zone, maximum 0.23℃/km was obtained and the mean was 0.06℃/km. The role of water temperature inversion as an indicator to determine the formation of water front. As a result of the water mass analysis, Jeju Warm Current Water and Tsushima Warm Current Water of high temperature and high salt intruded from the middle to the bottom. In the middle layer occurred as the Yellow Sea Cold Water of low water temperature and low salinity expanded.