• Title/Summary/Keyword: water blooms

Search Result 268, Processing Time 0.029 seconds

Timing for the First Appearance of Swimming Cells of Harmful Algae, Cochlodinium polykrikoides and Their Growth Characteristics in the South Sea of Korea

  • Lee, Chang-Kyu;Jung, Chang-Su;Lee, Sam-Geun;Kim, Suk-Yang;Lim, Wol-Ae;Kim, Hak-Gyoon;Kang, Young-Sil
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2001.10a
    • /
    • pp.204-205
    • /
    • 2001
  • Manful algae, Cochlodinium polykrikoides has damaged to fisheries organisms by making massive blooms mainly in the South Sea during the higher water temperature season since 1995 in Korea. Ecological and hydrodynamic studies of the species offer useful information in understanding its bloom mechanism giving promising data for the modeling and prediction of the blooms. (omitted)

  • PDF

Estimating Optimal Parameters of Artificial Neural Networks for the Daily Forecasting of the Chlorophyll-a in a Reservoir (호소내 Chl-a의 일단위 예측을 위한 신경망 모형의 적정 파라미터 평가)

  • Yeon, Insung;Hong, Jiyoung;Mun, Hyunsaing
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.4
    • /
    • pp.533-541
    • /
    • 2011
  • Algal blooms have caused problems for drinking water as well as eutrophication. However it is difficult to control algal blooms by current warning manual in rainy season because the algal blooms happen in a few days. The water quality data, which have high correlations with Chlorophyll-a on Daecheongho station, were analyzed and chosen as input data of Artificial Neural Networks (ANN) for training pattern changes. ANN was applied to early forecasting of algal blooms, and ANN was assessed by forecasting errors. Water temperature, pH and Dissolved oxygen were important factors in the cross correlation analysis. Some water quality items like Total phosphorus and Total nitrogen showed similar pattern to the Chlorophyll-a changes with time lag. ANN model (No. 3), which was calibrated by water temperature, pH and DO data, showed lowest error. The combination of 1 day, 3 days, 7 days forecasting makes outputs more stable. When automatic monitoring data were used for algal bloom forecasting in Daecheong reservoir, ANN model must be trained by just input data which have high correlation with Chlorophyll-a concentration. Modular type model, which is combined with the output of each model, can be effectively used for stable forecasting.

Characteristics of Long-term Water Quality Variations and Cochlodinium polykrikoides Blooms in the Mid-southern Coastal Waters of Korea (한국 남해 중부 해역의 장기수질환경변화와 Cochlodinium polykrikoides 적조 발생의 특징)

  • Lee, Moon-Ock
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.14 no.1
    • /
    • pp.19-31
    • /
    • 2011
  • This study has examined the water quality environment of six areas in the mid-southern coastal waters of Korea in order to find the significance between water quality and algal blooms of the area, based on the last 17 years of data offered by the National Fisheries Research and Development Institute. Water temperature in these areas fluctuated with a three to five year of period, and revealed little yearly variations at the surface layer while slowly decreasing at the bottom layer. On the other hand, salinity tended to increase both the surface and bottom layers. Algal blooms had a tendency to decrease in their outbreaks and causative species, with a peak of the middle of 1990s. C. polykrikoides prevailed in the entire areas, and in particular, almost annually appeared in Goheung coastal area since 1995. C. polykrikoides blooms occurred when a mean water temperature was approximately $26^{\circ}C$, and salinities were between 31.00 and 31.50 but exceptionally 28.68 in Yeosu Coast. However, the concentrations of DIN, DIP, TN, TP, including DO, turned out not to be such significant factors for the outbreaks of C. polykrikoides blooms. Therefore, water temperature was judged as the most controlling factor for the outbreak of C. polykrikoides blooms.

Marine Environments in the Neighborhood of the Narodo as the First Outbreak Region of Cochlodinium polykrikoides Blooms (Cochlodinium polykrikoides 적조의 최초발생해역인 나로도 주변 해역의 해양환경)

  • Lee, Moon-Ock;Moon, Jin-Han
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.11 no.3
    • /
    • pp.113-123
    • /
    • 2008
  • We have analyzed a long term data of marine environments, red tide information and meteorology acquired by NFRDI and KMA, in order to understand the characteristics of marine environments in the Narodo coastal waters which is known to be the first outbreak region of Cochlodinium polykrikoides blooms. During the period of from 1992 to 2007, Cochlodinium polykrikoides blooms have first occurred more often in August. However, the outbreak time of the blooms tended to be earlier annually, and in addition, the surface salinity also had a tendency to increase. Consequently, it suggested that there might be a relationship between the transition of the outbreak time of the blooms and salinity. On the other hand, insolation was relatively rich but precipitation was relatively scarce in Gohung Province, compared to Yeosu or Tongyeong, when Cochlodinium polykrikoides blooms first occur in Narodo coastal waters. Average water temperature and salinity in August in Narodo coastal waters were all higher than those in Gamak and Jinhae bays, suggesting that Narodo coastal waters are a region of relatively high water temperature and high salinity. Also, concentrations of nutrients and chlorophyll- a were significantly low than those in Jinhae Bay, which is known to be a eutrophicated region, while the overall water quality seemed to be similar to Gamak Bay. The results of PCA(Principal Component Analysis) proved that insolation and water temperature are the most important factors for the outbreak of Cochlodinium polykrikoides blooms in Narodo coastal waters while concentrations of COD and dissolved oxygen are secondly important. Furthermore, typhoons also appeared to be one of most important factors for the outbreak of Cochlodinium polykrikoides blooms.

  • PDF

Characteristics of Marine Environment and Algal Blooms in the Inner Bays of the Korean South Coast (한국 남해안 내만의 해양환경과 적조발생의 특징)

  • Lee, Moon-Ock;Kim, Pyeong-Joo;Kwon, Yeong-Ah
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.469-472
    • /
    • 2006
  • The primary objective of this study was to gain insight into the characteristics of algal blooms in relation to the marine environment of the Korean Southern Coast, using more than 22 years worth of data since the first known occurrence of algal blooms. Algal blooms tend to occur when the precipitation or water temperature for a ten-day period prior to the annual bloom exceeds the long-term mean value. There are three notable causative species in six different inner bays, namely Prorocentrum sp., Skeletonema costatum, and Heterosigma akashiwo, and in addition, these three species appeared in different conditions of water temperature and salinity at each region.

  • PDF

Design of In-situ Self-diagnosable Smart Controller for Integrated Algae Monitoring System

  • Lee, Sung Hwa;Mariappan, Vinayagam;Won, Dong Chan;Shin, Jaekwon;Yang, Seungyoun
    • International Journal of Advanced Culture Technology
    • /
    • v.5 no.1
    • /
    • pp.64-69
    • /
    • 2017
  • The rapid growth of algae occurs can induce the algae bloom when nutrients are supplied from anthropogenic sources such as fertilizer, animal waste or sewage in runoff the water currents or upwelling naturally. The algae blooms creates the human health problem in the environment as well as in the water resource managers including hypoxic dead zones and harmful toxins and pose challenges to water treatment systems. The algal blooms in the source water in water treatment systems affects the drinking water taste & odor while clogging or damaging filtration systems and putting a strain on the systems designed to remove algal toxins from the source water. This paper propose the emerging In-Situ self-diagnosable smart algae sensing device with wireless connectivity for smart remote monitoring and control. In this research, we developed the In-Site Algae diagnosable sensing device with wireless sensor network (WSN) connectivity with Optical Biological Sensor and environmental sensor to monitor the water treatment systems. The proposed system emulated in real-time on the water treatment plant and functional evaluation parameters are presented as part of the conceptual proof to the proposed research.

An Initiative Study on Relationship between Algal Blooms and Asian Dust for Regulation of Algal Blooms (조류 성장 억제를 위한 녹조 및 적조 발생과 황사의 상관관계 초기적 연구)

  • Kim, Tai-Jin;Jeong, Jaechil;Seo, Rabeol;Kim, Hyung Moh;Kim, Dae Geun;Chun, Youngsin;Park, Soon-Ung;Yi, Sehyoon;Park, Jun Jo;Lee, Jin Ha;Lee, Jay J.;Lee, Eun Ju
    • KSBB Journal
    • /
    • v.29 no.4
    • /
    • pp.285-296
    • /
    • 2014
  • Although the problems of the algal blooms have been world-widely observed in freshwater, estuary, and marine throughout the year, it is not yet certain what are the basic causes of such blooms. Consequently, it is very difficult to predict when and where algal blooms occur. The constituents of the Asian dust are in a good agreement with the elements required for the algal growth, which suggests some possible relationship between the algal blooms and the Asian dust. There have been frequently algal blooms in drinking water from rivers or lakes. However, there is no any algal blooms in upwelling waters where the Asian dust cannot penetrate into the soil due to its relatively weak settling velocity (size of particles, $4.5{\pm}1.5{\mu}m$), which implies the possible close relationship of the Asian dust with algal blooms. The present initiative study is thus intended firstly in Korea to illustrate such a relationship by reviewing typical previous studies along with 12 years of weekly iron profiles (2001~2012) and two slant culture experiments with the dissolved Asian dust. The result showed bacterial suspected colonies in the slant culture experiment that are qualitatively in a good agreement with the recent Japanese studies. Since the diatoms require cheap energy (8%) compared to other phytoplankton (100%) to synthesize their cell walls by silicate, the present results can be used to predict algal blooms by diatoms if the concentrations of iron and silicate are available during spring and fall. It can be postulated that the algal blooms occur only if the environmental factors such as light, nutrients, calm water surface layer, temperature, and pH are simultaneously satisfied with the requirements of the micronutrients of mineral ions supplied by the Asian dust as enzymatic cofactors for the rapid bio-synthesis of the macromolecules during algal blooms. Simple eco-friendly methods to regulate the algal blooms are suggested for the initial stage of blooming with limited area: 1) to cover up the water surface with black curtain and inhibit photosynthesis during the day time, 2) to blow air (20.9%) or pure oxygen into the bottom of the water and inhibit rubisco for carbon uptake and nitrate reductase for nitrogen uptake activities in algal growth during the night, 3) to eliminate the resting spores or cysts by suction of bottom sediments as deep as 5 cm to prevent the next year germinations.

Distributions of Water Temperature and Salinity in the Korea Southern Coastal Water During Cochlodinium polykrikoides Blooms (C. polykrikoides 적조 발생시의 한국 남해안의 수온 및 염분 분포)

  • Lee, Moon-Ock;Choi, Jae-Hoon
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.4
    • /
    • pp.235-247
    • /
    • 2009
  • In order to elucidate the cause of Cochlodinium polykrikoides blooms in the Korea southern coastal water, we investigated observational data of water temperatures and salinities in summer and winter, obtained from the stoppage of ship by NFRDI (National Fisheries Research and Development Institute) as well as composite images by NOAA from 1995 to 2008. Cochlodinium polykrikoides blooms occurred when water temperature was approximately $25.0{\sim}26.0^{\circ}C$ and salinity was 31.00 psu on average in Narodo neighboring seas. Different thermohaline fronts were observed between the Korea southern coastal water and the open sea water in summer and winter, respectively. That is, in winter four fronts were observed between the Korea southern coastal water with low temperature and low salinity, intermediate water originated from Tsushima Warm Current, Tsushima Warm Current with high temperature and high salinity, and the China coastal water with low temperature and low salinity. In contrast, in summer two fronts were observed between the Korea southern coastal water with low temperature and high salinity, Tsushima Warm Current with high temperature and low salinity, and the China coastal water with high temperature and high salinity. These thermohaline fronts also proved to be formed by two water masses with a different physical property, in terms of T-S diagrams. Consequently, we noticed that C. polykrikoides blooms occurring in Narodo neighboring seas in summer had a close relationship with thermohaline fronts observed between the Korea southern coastal water and Tsushima Warm Current.

  • PDF

Spatial and Temporal Aspects of Phytoplankton Blooms in Complex Ecosystems Off the Korean Coast from Satellite Ocean Color Observations

  • Ahn, Yu-Hwan;Shanmugam, Palanisamy;Chang, Kyung-Il;Moon, Jeong-Eon;Ryu, Joo-Hyung
    • Ocean Science Journal
    • /
    • v.40 no.2
    • /
    • pp.67-78
    • /
    • 2005
  • Complex physical, chemical and biological interactions off the Korean coast created several striking patterns in the phytoplankton blooms, which became conspicuous during the measurements of ocean color from space. This study concentrated on analyzing the spatial and temporal aspects of phytoplankton chlorophyll variability in these areas using an integrated dataset from a Sea-viewing Wide Field-of-view Sensor (SeaWiFS), Advanced Very High Resolution (AVHRR) sensor, and Conductivity Temperature Depth (CTD) sensor. The results showed that chlorophyll concentrations were elevated in coastal and open ocean regions, with strong summer and fall blooms, which appeared to spread out in most of the enclosed bays and neighboring waters due to certain oceanographic processes. The chlorophyll concentration was observed to range between 3 and $54\;mg\;m^{-3}$ inside Jin-hae Bay and adjacent coastal bays and 0.5 and $8\;mg\;m^{-3}$ in the southeast sea offshore waters, this gradual decrease towards oceanic waters suggested physical transports of phytoplankton blooms from the shallow shelves to slope waters through the influence of the Tsushima Warm Current (TWC) along the Tsushima Strait. Horizontal distribution of potential temperature $(\theta)$ and salinity (S) of water off the southeastern coast exhibited cold and low saline surface water $(\theta and warm and high saline subsurface water $({\theta}>12^{\circ}C; S>34.4)$ at 75dBar, corroborating TWC intrusion along the Tsushima Strait. An eastward branch of this current was called the East Korean Warm Current (EKWC), tracked with the help of CTD data and satellite-derived sea surface temperature, which often influenced the dynamics of mesoscale anticyclonic eddy fields off the Korean east coast during the summer season. The process of such mesoscale anticyclonic eddy features might have produced interior upwelling that could have shoaled and steepened the nutricline, enhancing phytoplankton population by advection or diffusion of nutrients in the vicinity of Ulleungdo in the East Sea.

Numerical Modeling Effects of a Skimmer Weir Method on the Control of Algal Growth in Daecheong Reservoir (부상웨어 설치에 따른 대청호 조류 성장 억제 효과 수치모의)

  • Kim, Yu Kyung;Chung, Se Woong;Lee, Heung Soo;Jung, Yong Rak
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.5
    • /
    • pp.581-590
    • /
    • 2007
  • A float-type weir has been proposed for the control of algal blooms in some of eutrophic reservoirs recently. It is known as a costly and ecologically sound method, but there is little understanding about the sustainability of this low-cost technology for reservoirs that are located in monsoon climate areas where large flood events during the summer cause high water surface fluctuations. The objective of this study was to assess the effectiveness of a skimmer weir aimed at controlling algal blooms in the lacustrine zone and near the drinking water withdrawal structures of Daecheong Reservoir under various hydrodynamic flow conditions. The effect of weir on the control of algal blooms was simulated using a laterally averaged two-dimensional hydrodynamic and eutrophication model that can accommodate vertical displacement of the weir following the water surface fluctuations. Numerical simulations were performed for two different hydrological conditions, 2001 and 2004 for representing drought year and normal year, respectively. The results showed that the weir is very effective method to control algal blooms in the reservoir by curtailing the transport of phosphorus and algae from contaminated inflow to the downstream lacustrine epilimnion during the draught year. However, large flood events occurred in 2004 transported nutrients and algae built upstream of the weir into the downstream euphotic zone by strong entrainments.