• Title/Summary/Keyword: water additives

Search Result 613, Processing Time 0.03 seconds

A Study on the Analytical Method of Artificial Sweeteners in Foods (식품 중 인공감미료의 분석법에 관한 연구)

  • Kim, Hee-Yun;Yoon, Hae-Jung;Hong, Ki-Hyung;Lee, Chang-Hee;Park, Sung-Kwan;Choi, Jang-Duck;Choi, Woo-Jeong;Park, Sun-Young;Kim, Ji-Hye;Lee, Chul-Won
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.1
    • /
    • pp.14-18
    • /
    • 2004
  • Analysis methods of artificial sweeteners, aspartame, acesulfame potassium, sodium saccharin, and sucralose isolated from foods were developed using high performance liquid chromatography, HPLC conditions for aspartame, acesulfame potassium, and sodium saccharin were: column, Symmetry $C_{18}(3.9mm\;i.d{\times}150mm,\;5{\mu}m)$; mobile phase, 0.05M sodium phosphate monobasic : acetonitrile (9 : 1, pH 3.5, containing 0.01M tetrapropylammonium hydroxide); detector, UV detector at 210 nm. HPLC condition for sucralose were : column, Symmetry $C_{18}(3.9mm\;i.d{\times}150mm,\;5{\mu}m)$; mobile phase, water:methanol (7 : 3); detector, refractive index detection (sensitivity = 16). Recoveries of artificial sweeteners in foods including soft drinks, fruit and vegetable beverages, alcoholic beverages, fermented milk beverages, soybean milk, ice cream, snacks, chewing gums, jam, honey, kimchi salted food, special dietary products, processed fish products, candies, food additive mixtures, chocolate and cocoa were 76.1-101.3%, 82.3-103.2%, 83.1-103.7%, and 80,6-99.5% for aspartame, acesulfame potassium, sodium saccharin, and sucralose, respectively.

Effect of Additives on the Cloud Point of Polyethylene Glycols

  • Han, Suk-Kyu;Jhun, Byung-Hak
    • Archives of Pharmacal Research
    • /
    • v.7 no.1
    • /
    • pp.1-9
    • /
    • 1984
  • Polyethylene glycol 20, 000 and 6, 000 were found to have an upper consolute temperature, called "cloud point", and the effects of various additives on the polythylene glycols were investigated in this study. Electrolytes lowered the cloud point in proportion to their concentrations through dehydration and electrostriction. It was found that anions played a more important role than cations and the effects of both the cations and the anions clearly followed the classical Hofmeister series. However, the Schultze Hardy rule holds for the effect of anions, and fails for the effect of cations. Salts of large polarizable anions such as iodide and thiocynate rather raised the cloud point, and their effects were ascribed to the fact that they break the water structure and weaken hydrophobic bonding of the polyxyethylene moiety. Nitrates of polyvalent cations also raised the cloud point. This was ascribed to the complex formation between the polyvalent cations and ether oxygens of the polyoxyethylenes. This explained the failure 'of the Schultz-Hardy rule for cations. Uncharged aromatic compounds drastically lowered the clound point, while aliphatic alcohols slightly lowered the cloud point, This result suggests that there might be some interaction between ether oxygens and aromatic nucleus.c nucleus.

  • PDF

The Effect of Hydration Retarder on Initial Compressive Strength of Sodium Silicate-Cement Grouted Soil (시멘트 수화지연제가 규산나트륨-시멘트 그라우트 초기강도에 미치는 영향에 관한 연구)

  • Chun, Byung-Sik;Yoo, Young-Nam
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.453-460
    • /
    • 2005
  • Sodium silicate - the usual portland cement which accomplishes a cement pouring reconsideration main stream and sodium silicate(No.3) after reacting sodium silicate(No.3) with the reaction sodium silicate where oxidation natrium which is included does not react with the cement receiving stiffening water it will burn together on underwater and to become the durability lacks pouring it is recognized. From the hazard which improves an advantage it used the additive which relates in congealing and stiffening of the portland cement and sodium tripolyphosphate(STPP) addition hour initial material age(72 hours at once) which does to be revealed the at high-in-tensity is discovered while accomplishing. The effect of additives on the reactions of sodium silicate solution and cement suspesion was investigated by various physical and chemical tests, such as Si-NMR, XRD, SEM uniaxial compression test. The additives were STPP(sodium tripolyphosphate), EDTA, SUGAR. The compressive strength of sodium silicate(No.3) - cement grout with additives was about $1.5{\sim}10$ times higher than that without additive in early age(72 hours).

  • PDF

Redox reaction of Fe-based oxide mediums for hydrogen storage and release: cooperative effects of Rh, Ce and Zr additives (수소 저장 및 방출을 위한 Fe 계 산화물 매체의 환원-산화 반응: Rh, Ce 및 Zr 첨가제의 협동 효과)

  • Lee, Dong-Hee;Park, Chu-Sik;Kim, Young-Ho
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.3
    • /
    • pp.189-198
    • /
    • 2008
  • Cooperative effects of Rh, Ce and Zr added to Fe-based oxide mediums were investigated using temperature programmed redox reaction (TPR/TPO) and isothermal redox reaction in the view point of hydrogen storage and release. As the results of TPR/TPO, Rh was a sale additive to remarkably promote the redox reaction on the medium as evidenced by the lower highest peak temperature, even though its addition was to accelerate deactivation of the mediums due to sintering. On the other hand, Ce and Zr additives played an important role to suppress deactivation of the medium in repeated redox cycles. The medium co-added by Rh, Ce and Zr (FRCZ) exhibited synergistic performance in the repeated isothermal redox reaction, and the amount of hydrogen produced in the water splitting step at 623 K was highly maintained at ca. $17\;mmol{\cdot}g^{-1}-Fe$ during three repeated redox cycles.

Resistance to Sea Water of Hardened Cement with Calcium Sulfoaluminate Type Expansive Additives(I) (칼슘 설포알루미네이트계 팽창재를 혼합한 시멘트 경화체의 내해수성(I))

  • 전준영;송종택
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.3
    • /
    • pp.234-240
    • /
    • 2003
  • Hardened cement pastes of OPC which contains 10 wt% CSA type expansive additives were immersed in aqueous solution of 10 wt% MgS $O_4$.7$H_2O$ and then investigated by compressive strength, XRD. SEM and DSC etc.. According to the results including the hydration products and the microstructure of the hardened paste, the case of CSA type expansive additives[No. 6(C/(equation omitted) : 2.29, A/(equation omitted) : 0.16)] prepared from raw materials increased the resistance to $Mg^{2+}$, S $O_4$$^{2-}$ ion diffusion than that of OPC paste due to the densification by the formation of fine ettringite in the first stage and the hydrates according to $\beta$-C$_2$S hydration in the late period.

Microstructure and mechanical behavior of cementitious composites with multi-scale additives

  • Irshidat, Mohammad R.;Al-Nuaimi, Nasser;Rabie, Mohamed
    • Advances in concrete construction
    • /
    • v.11 no.2
    • /
    • pp.163-171
    • /
    • 2021
  • This paper studies the effect of using multi-scale reinforcement additives on mechanical strengths, damage performance, microstructure, and water absorption of cementitious composites. Small dosages of carbon nanotubes (CNTs) or polypropylene (PP) microfibers; 0.05%, 0.1%, and 0.2% by weight of cement; were added either separately or simultaneously into cement mortar. The experimental results show the ability of these additives to enhance the mechanical behavior of the mortar. The best improvement in compressive and flexural strengths of cement mortar reaches 28% in the case of adding a combination of 0.1% CNTs and 0.2% PP fibers for compression, and a combination of 0.2% CNTs and 0.2% PP fibers for flexure. Adding CNTs does not change the brittle mode of failure of plain mortar whereas the presence of PP fibers changes it into ductile failure and clearly enhances the fracture energy of the specimens. Scanning electron microscopic (SEM) images of the fracture surfaces highlights the role of CNTs in improving the adhesion between the PP fibers and the hydration products and thus enhance the ability of the fibers to mitigate cracks propagation and to enhance the mechanical performance of the mortar.

Sorption of Pb and Cu on different types of microplastics

  • Ruri, Lee;Eun Hea, Jho;Jinsung, An
    • Membrane and Water Treatment
    • /
    • v.14 no.1
    • /
    • pp.19-25
    • /
    • 2023
  • The studies on the effect of different plastic properties (e.g., types, shapes, presence of additivies) on the sorption of contaminants in the agricultural environment are limited. In this study, Cu and Pb, the commonly found heavy metals in the environment, were used to investigate the sorption capacities of microplastics (MPs). The Pb sorption capacity increased in the order of polystyrene (PS)<polyethylene (PE)<polyvinyl chloride (PVC). The estimated Cu sorption capacity was greater for the PE films than the PE fragments, while the sorption strength was greater for the PE fragments. This suggests that the shapes of MPs can affect the contaminant sorption capacities. With the PE fragments, the Pb sorption capacity was greater than the Cu sorption capacity by 10-12 times. Also, the Pb and Cu sorption capacities were greater for the PE fragments with additives than the PE fragment without additives. After the sorption of Pb or Cu on MPs, the toxic effects of the Pb or Cu solutions were decreased, suggesting that the toxic effects of contaminants can be affected by the co-presence of MPs in the environment. Overall, the results show that different types and shapes of MPs and the presence of additives can affect the heavy metal sorption capacities of MPs.

Ethanolamine and boron abuse to limit microbial growth in water-synthetic metalworking fluids (미생물 성장을 억제하기 위하여 수용성 절삭유에 과다하게 첨가한 붕소와 아민 사례 연구)

  • Park, Donguk;Paik, Dohyeon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.15 no.3
    • /
    • pp.270-276
    • /
    • 2005
  • This study was conducted to examine whether a specific synthetic metalworking fluid (MWF), "A", in use for 10 months without replacement, displayed microbial resistance and to identify the additives associated with the control of microbial growth. Three synthetic MWF products ("A", "B", and "C") were studied every week for two months. Microbial deterioration of the fluids was assessed through evaluation by endotoxin, bacteria and fungi levels in the MWFs. In addition, formaldehyde, boron, ethanolamine, and copper levels were also studied to determine whether they influence microbial growth in water-based MWFs. Throughout the entire study in the sump where MWF "A" was used, bacteria counts were lower than 103 CFU/mL, and endotoxins never exceeded 103 EU/mL. These levels were significantly lower than levels observed in sumps badly deteriorated with microbes. Boron levels in MWF "A" ranged from 91.7 to 129.6 ppm, which was significantly higher than boron levels found in other MWF products. The total level of ethanolamine (EA) in MWF "A" ranged from 35,595 to 57,857 ppm (average 40,903 ppm), which was over ten times higher than that found in other MWFs. Monoethanolamine (MEA), diethanolamine (DEA) and triethanolamine (TEA) concentrations in MWF "A" were also significantly higher than seen in other MWFs. However, although EA and boron might improve anti-microbial performance, their abuse can pose a serious risk to workers who handle MWFs. From an industrial hygiene perspective, our study results stress that the positive synergistic effect of boron and EA in reducing microbial activity in MWF must be balanced with the potentially negative health effects of such additives. Our study also addresses the disadvantage of failing to comprehensively report MWF additives on Material Safety Data Sheets (MSDS). Future research in MWF formulation is needed to find the best level of EA and boron for achieving optimal synergistic anti-microbial effects while minimizing employee health hazards.

Effects of Suppository Bases and Additives on Rectal Absorption of Ibuprofen Lysinate (이부프로펜 리지네이트의 직장흡수에 미치는 좌제기제 및 첨가제의 영향)

  • Jeon, Hong-Ryeol;Park, Dong-Woo;Lee, Seung-Mok;Yi, Jung-Woo;Choi, Young-Wook
    • Journal of Pharmaceutical Investigation
    • /
    • v.24 no.3
    • /
    • pp.145-153
    • /
    • 1994
  • Ibuprofen is an effective non-steroidal anti-inflammatory drug (NSAID), but it has several limitations in clinical application because of low solubility in water and gastrointestinal irritation. A water-soluble salt of ibuprofen, ibuprofen Iysinate, has been synthesized to overcome these shortcomings, and it was formulated as suppository for rectal administration. Witepsol and polyethylene glycols were employed as suppository bases for either ibuprofen or ibuprofen Iysinate, in order to compare the bioavailability in rabbits. The plasma concentrations of ibuprofen were assayed by HPLC after a rectal administration of ibuprofen and ibuprofen Iysinate, respectively. In addition to the comparison of two suppository bases, the other factors which affect on rectal absorption were also evaluated, especially in the point of not only particle size and shape of ibuprofen Iysinate but also effects of additives such as stearic acid, cetyl alcohol and capric acid. And pharmacokinetic parameters such as AUC, $C_{max}$, and $T_{max}$ were also compared. In conclusion, spray-dried ibuprofen Iysinate which was polyporous and spherical shape gave an increased absorption from the rectal formulations with Witepsol Hl5 and stearic acid.

  • PDF

An analysis of influence on chemical additives in gas hydrate formation (하이드레이트 제조시 다양한 화학물질 첨가에 의한 영향 분석)

  • Lee Young-Chul;Mo Yong-Gi;Cho Byoung-Hak;Baek Young-Soon
    • Journal of the Korean Institute of Gas
    • /
    • v.8 no.4 s.25
    • /
    • pp.23-29
    • /
    • 2004
  • This work carried out experiment to change characteristics of hydrate formation using various chemicals which are acetone, dimethylbutane, polyvinylalcohol, methanol and ethlyene glycol as additives in gas hydrate formation. Gas storage ability of formed hydrate with acetone, firnethylbuthane and polyvinylalcohol in gas hydrate formation increased higher than that obtained with pure water. Among them polyvinylalcohol showed best gas storage ability, so it is a more useful promoter Methanol and Ethylene gl?col in using additives showed the characteristics of inhibitor and methanol is lower gas storage ability than ethylene gl)rcol as a inhibitor in hydrate formation, so it is a more useful inhibitor. But, low concentration of methanol and ethylene glycol showed considerably higher gas storage ability of hydrate than that obtained with Pure water and showed the characteristics of promoter in gas hydrate formation.

  • PDF