• Title/Summary/Keyword: wastewater sampling

Search Result 99, Processing Time 0.035 seconds

Development of Source Profiles and Estimation of Source Contribution for VOCs by the Chemical Mass Balance Model in the Yeosu Petrochemical Industrial Complex (여수석유화학산단 내 VOCs에 대한 오염원 분류표의 개발 및 CMB 모델에 의한 기여도 산정)

  • Jeon Jun-Min;Hur Dong;Kim Dong-Sul
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.1
    • /
    • pp.83-96
    • /
    • 2005
  • The purposes of this study were to characterize the local levels of VOCs (volatile organic compounds), to develop source profiles of VOCs, and to quantify the source contribution of VOCs using the CMB (chemical mass balance) model. The concentration of VOCs had been measured every 6-day duration in the SRO monitoring site in the Yeosu Petrochemical Industrial Complex from September 2000 to August 2002. The total of 35 target VOCs, which were included in the TO-14 designated from the U.S. EPA, was selected to be monitored in the study area. During a 24-h period, the ambient VOCs were sampled by using canisters placing about 10 ~ 15 m above the ground level. The collected canisters were then analyzed by a GC-MS in the laboratory. Aside from ambient sampling at the SRO site, the VOCs had been intensively and massively measured from 8 direct sources and 4 general sources in the study area. The results obtained in the study were as follows; first, the annual mean concentrations of the target VOCs were widely distributed regardless of monitoring sites in the Yeosu Petrochemical Industrial Complex. In particular, the concentrations of BTX (Benzene, Toluene, Xylene), vinyl chloride were higher than other target compounds. Second, based on these source sample data, source profiles for VOCs were developed to apply a receptor model, the CMB model. Third, the results of source apportionment study for the VOCs in the SRO Site were as follows; The source of petrochemical plant was apportioned by 31.3% in terms of VOCs mass. The site was also affected by 16.7% from wastewater treatment plant, 14.0% from iron mills, 8.4% from refineries, 4.4% from oil storage, 3.8% from automobiles, 2.3% from fertilizer, 2.3% from painting, 2.2% from waste incinerator, 0.6% from graphic art, and 0.4% from gasoline vapor sources.

Hydrochemical Effects of Tributaries and Discharged Waters in the Yangjae Stream Flowing Peri-urban Area (하천유지용수와 지천 유입에 따른 도시하천 양재천의 수리화학적 변화 연구)

  • Kim, Youn-Tae;Chung, Euijin;Park, Jonghoon;Woo, Nam C.
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.6
    • /
    • pp.678-687
    • /
    • 2018
  • The purpose of this study was to understand the unique and complicated feature of urban stream receiving various inflows. The Yangjae stream, the second tier of the Han River, runs through the southern parts of Seoul, Korea and its middle part flows on the boundary of Seoul where land use is actively changing. Stream flow was greatly influenced by rainfall. Other than rainfall events, effluent discharge from wastewater treatment plant (WWTP) comprised 51 % of stream flux. As a result, majority ions water chemistry was changed at the receiving zone of the discharged effluent (Zone A). Its contribution increased to 69.9 % at the second sampling period with low stream flow. In the middle zone, inflows from the northern area, recently developed to a residential district showed low $NO_3-N$ and high $HCO_3$, Ca, $SO_4$, and $SiO_2$ indicating the effects of groundwater and concrete. One inflow (T-8), with extremely high Na and Cl, median $SiO_2$, was assessed to have anthropogenic influence, however its contribution to main stream was under 1 %. Road construction near Y-13 also affected water chemistry leading to the highest Na and Cl concentration. These hydro chemical changes can be critically used to evaluate the changes in water budget and fate of chemicals in a peri-urban watershed occasioned by human activities on the Yangjae.

Distribution and Characteristics of Culturable Airborne Bacteria and Fungi in Municipal Wastewater Treatment Plants (하수처리시설에서 배양 가능한 공기중 미생물의 분포 및 특성)

  • Park, Kyo-Nam;Koh, Ji-Yun;Jeong, Choon-Soo;Kim, Jong-Seol
    • Korean Journal of Microbiology
    • /
    • v.47 no.1
    • /
    • pp.38-49
    • /
    • 2011
  • Bioaerosols generated from wastewater treatment plants may create health risks for plant workers and nearby residents. To determine the levels of culturable airborne bacteria and fungi in bioaerosols, samples were seasonally collected above and near the aeration tanks of one feces-urine and three sewage treatment plants in Ulsan, Korea with an impaction-type sampler. In the feces-urine treatment plant, concentrations of heterotrophic bacteria were between $1.3({\pm}0.2){\times}10^3$ and $2.6({\pm}1.2){\times}10^4$ MPN/$m^3$ above the aeration tank and between $1.7({\pm}1.0){\times}10^2$ and $7.2({\pm}2.2){\times}10^3$ MPN/$m^3$ near the aeration tank. Coliform bacteria were detected both above and near the aeration tank. In cases of sewage treatment plant, the numbers of heterotrophic bacteria ranged from $1.9({\pm}1.2){\times}10^1$ to $1.8({\pm}1.2){\times}10^4$ MPN/$m^3$ above the aeration tank and from $5.0({\pm}2.8){\times}10^0$ to $6.6({\pm}2.0){\times}10^3$ MPN/$m^3$ near the aeration tank. At reference sites, the concentrations of heterotrophs in ambient air were measured between $7.0{\times}10^0$ and $2.7{\times}10^1$ MPN/$m^3$. When we isolated and tentatively identified heterotrophic bacteria, Pseudomonas luteola was the most dominant species in bioaerosols from wastewater treatment plants, whereas the most abundant one in reference samples was Micrococcus sp. When we measured fungal concentrations in bioaerosols, they were rather similar regardless of sampling locations and seasons, and such genera as Cladosporium, Alternaria, and Penicillium were commonly identified.

Environmental Exposure to Tobacco-specific Nitrosamines in an Area Near a Fertilizer Plant (비료제조공장 인근 지역의 담배특이니트로사민 환경 노출)

  • Ha, Jae-Na;Yoon, Mi-Ra;Chang, Jun Young;Koh, Dohyun;Shin, Ho-Sang;Kim, Suhyang;Lee, Chul-Woo;Lee, Bo-Eun;Kim, Jeong-Soo
    • Journal of Environmental Health Sciences
    • /
    • v.46 no.4
    • /
    • pp.398-409
    • /
    • 2020
  • Objectives: This study aimed to evaluate environmental exposure to tobacco-specific nitrosamines (TSNAs) by conducting an analysis of the concentration of TSNAs in deposited dust collected from a fertilizer plant and the surrounding village, a simulation of high-temperature drying of tobacco waste, and CALPUFF modeling. Methods: The raw materials of the products, deposited dust (inside and outside the plant and residential area), soil, and wastewater were sampled and the TSNA concentrations were analyzed by LC-MS/MS. As the plant was closed down before the investigation, simulation tests were conducted to confirm the substances discharged during high-temperature (300℃) drying of tobacco waste. CALPUFF modeling was performed to identify the area of influence due to exposure to TSNAs. Results: TSNAs were detected in organic fertilizers estimated to contain tobacco waste, deposited dust, and soil collected from inside and outside the plant. N'-nitrosonornicotine (NNN), 4-(methylnitrosoamino)-1-(3-pyridyl)-1-butanone (NNK), and N'-nitrosoanatabine (NAT) components were detected in five of 15 deposited dust samples collected from the residential area around the plant, while TSNAs were not detected in the five sampling points in the control area. Also, the simulation test for the high temperature drying of tobacco waste found emissions of TSNAs. The CALPUFF modeling results showed that the survey area was likely to be included in the area of influence of TSNA emissions from the plant. Conclusions: It is estimated that harmful tobacco ingredients such as TSNAs were dispersed in nearby areas due to the illegal use of tobacco waste as a raw material to produce organic fertilizers at the plant. These findings assume that the residents have been exposed to TSNAs and suggest that the need for the establishment of measures to manage environmental health.

Physico-chemical Water Quality Gradients Along the Main Axis of the Headwater-to-Downstream of Geumho River and Their Influences on Fish Guilds (금호강의 상.하류간 이.화학적 수질구배 및 이에 따른 어류 길드영향)

  • Kim, Young-Hui;Han, Jeong-Ho;An, Kwang-Guk
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.4
    • /
    • pp.561-573
    • /
    • 2012
  • The object of this study was to analyze long-term water quality gradients during 1992-2008 at six sites of Geumho River and near-by two sites of Nakdong River and their influences on fish trophic guilds and tolerance guilds along with ecological health. Water quality including biological oxygen demand (BOD), chemical oxygen demand (COD), conductivity, total phosphorus (TP), total nitrogen (TN), and total suspended solids (TSS) varied largely depending on the sampling locations and seasons. Values of ambient BOD, COD, TP, and TN were greater in the downstream than in the upstream reach, and seasonal and interannual variabilities were also higher in the downstreams. This phenomenon was evident due to a dilution by the Asian monsoon rainfall during the monsoon. These outcomes indicate that point sources near the downstream are important for the chemical conditions, but also seasonal stream runoff was considered as an important factor regulating the chemical conditions. Conductivity decreased rapidly during the summer due to ionic dilution, and nutrients (N, P), BOD, COD had an inverse function of seasonal precipitation. Based on the water quality, we selected two sites (control site = $C_s$ vs. impacted site = $I_s$) for impact analysis of water chemistry on fish community and trophic/tolerant guilds. Fish guild analysis showed that species diversity was higher in the headwater stream ($C_s$) than the impacted downstream ($I_s$), and that the proportion of tolerant and omnivore species were greater in the impacted site of downstream. Comparisons of water quality between Geumho River and Nakdong River indicated that Geumho River was considered as a point source which degradated water quality to the Nakdong River. Overall, chemical water quality and fish guild analysis suggest that even if current chemical quality got better after 1996 due to continuous constructions of wastewater disposal plants near the downstreams, fish compositions of tolerant and omnivores were still dominated the community. Thus, biological restoration based on ecological health is required for the ecosystem conservation.

Screening of Organo Phosphorus Insecticide Fenitrothion-Degrading Microorganisms (유기인계 살충제 fenitrothion 분해미생물 탐색)

  • Choi, Hyuek;Kim, Bok-Jin;Bae, Do-Yong;Lee, Young-Deuk;Kang, Sun-Chul
    • Korean Journal of Environmental Agriculture
    • /
    • v.17 no.3
    • /
    • pp.279-285
    • /
    • 1998
  • Fenitrothion-degrading microorganisms were isolated from 124 sampling sites of paddy, upland, forest and polluted soil, and wastewater. A total of 1,071 strains were isolated from each selective medium supplemented with 50mg/l of fenitrothion - nutrient agar (NA) 601, potato dextrose agar (PDA) 201, Actinomycetes isolation agar (AIA) 168 and basal salt medium (BSM) 101, respectively. Twenty-eight effective strains of them, which showed more than 80% degradation of fenitrothion by the gasliquid chromatography(GLC) analysis. were successfully selected from each liquid culture supplemented with 50mg/l of fenitrothion - NB 12(upland soil 3, paddy soil 3, forest soil 2, polluted soil 4), PDB 8(upland soil 1, paddy soil 2, forest soil 2, polluted soil 3) and PSB 8(upland soil 1, forest soil 1, polluted soil 6), respectively. Four strains - NPal, NFol, PFol and BPol, which have the most powerful degradation activity were finally selected among 28 fenitrothion-degrading microorganisms based on the degradation rate at the concentration of 100mg/l fenitrothion in enrichment media.

  • PDF

Evaluation of Basic Unit for Non-point Pollutants in Runoff of West Coast Highway - Maesong Area (서해안 고속도로 매송지역 비점오염원 원단위 산정 연구)

  • Park, Seyong;Mo, Kyung;Kim, Leehyung;Kang, Heeman;Kim, Moonil
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.8
    • /
    • pp.33-40
    • /
    • 2010
  • In this study, evaluation of basic unit of non-point pollutant, which is fundamental evaluation of non-point loading, was conducted using both road point and angle of intersection point in Maesong area, West coast highway by utilizing Event Mean Concentrations(EMC). Concentration of pollutants except heavy metals at these two points rapidly decreased in 30 minutes after start of runoff. According to the results of EMC, for both sampling points, it was determined that the concentrations of TSS(Total Suspended Solid), $BOD_5$(Biological Oxygen Demand), and DOC(Dissolved Organic Carbon) were higher than those of wastewater effluent standard in Korea, however, the concentrations of T-N(Total Nitrogen) and T-P(Total Phosphorus) were lower than those of the standard. In terms of heavy metals, Fe, Pb, and Zn showed higher concentrations than others. When compared with the units established by the Ministry of Environment in Korea, the basic units of $BOD_5$ and T-N in this study were lower. On the other hand, when compared with foreign units, Cu, Pb, and Zn showed approximately 10 times higher concentrations. It was estimated that a long term monitoring should be conducted for obtaining additional data and more reliable basic units for the non-point pollutnats based on the results from this study.

Organic Matter and Hydraulic Loading Effects on Nitrification Performance in Fixed Film Biofilters with Different Filter Media

  • Peng, Lei;Oh, Sung-Yong;Jo, Jae-Yoon
    • Ocean and Polar Research
    • /
    • v.25 no.3
    • /
    • pp.277-286
    • /
    • 2003
  • Nitrification performance of fixed film biofilters using coarse sand, loess bead, or styrofoam beads in biofilter columns 1 meter high and 30cm in diameter were studied at different hydraulic and organic matter loading rates. Synthetic wastewater was supplied to the culture tank in order to maintain desired TAN concentrations in inlet water to biofilters. All the biofilters were conditioned 5 months before start of sampling. TAN and $NO_2-N$ conversion rates increased with an increase in the hydraulic loading rate (HLR). However, the improvement in biofilter performance was not linearly correlated to HLR in styrofoam bead filters. This is mainly due to the characteristics of the styrofoam beads used. TAN conversion rates of sand filters increased with the increase of HLR up to $200m^3/m^2$. per day. No increase in the TAN conversion rate was observed at the highest HLR since flooding on the media surface took place. HLR had a significant impact on the TAN conversion rates in loess bead filter up to the highest HLR tested (P<0.05). TAN conversion rates were much less at organic matter loading rates of 9 and 18kg $O_2/m^3$ per day than those without the addition of organic matter in styrofoam bead filters. The addition of glucose resulted in a reduction of the TAN conversion rate from 540 to 284g $TAN/m^3$ per day. No significant difference of TAN conversion rates between the two organic matter loading rates was found (p<0.05). This indicates that the impact of organic matter on nitrification becomes less and less sensitive with an increase in the COD/TAN ratio. At an organic matter loading rate of 9kg $O_2/m^3$. per day, a great reduction of TAN conversion rates was observed in sand filters and loess bead filters. Clearly, organic matter can be one of the most Important Impacting factors on nitrification. $NO_2-N$ conversion rates showed a similar trend for TAN. Based on the TAN and nitrite conversion rates, styrofoam beads showed the best performance among the three filter media tested. Also, the low gravity and price of styrofoam beads make the handling easier and more cost-effective for commercial application. The results obtained at the highest organic matter loading rates can be used in the biofilter design in recirculating aquaculture system.

Degradation Behavior of Endocrine Disrupter Bisphenol-A in the Lake and Stream (호소 및 하천에서 환경호르몬 Bisphenol-A의 분해거동에 관한 연구)

  • Kang, Ho;Shin, Kyung-Sook;Kim, Sun-Ki;Jin, Chang-Sook
    • Korean Journal of Environmental Biology
    • /
    • v.19 no.1
    • /
    • pp.59-69
    • /
    • 2001
  • Among the biodegradability tests, TOC-HANDAI and OECD method were utilized to examine the degree of biodegradation of endocrine disruptors, Bisphenol A (BPA) and Nonylphenol. Both methods used natural water microcosms and measured their biodegrada-bilities of BPA and Nonylphenol, in terms of TOC or DOC degradation with time for 28 days. Biodegradabilities for BPA, 73-78% with TOC-HANDAI method and 77-81% with OECD method were obtained respectively at the end of experiment. There was no difference in BPA degradation between two methods. BPA degradation was described by two distinct first order decay rates (k$_1$ and k$_2$) which could be separated by a simple visual fitting. Most of the initial decay reaction accelerated within 1-7 days with k$_1$of 0.24-0.34 $day^{-1}$. And the following another long term first order decay coefficient (k$_2$) showed 0.02-0.05 day$^{-1}$ with much flat slope. About 20-25% of initial BPA remained at the end of experiment. It suggests that the remaining TOC components in BPA biodegradation considered to be refractory metabolites of BPA. Nonylphenol at each sampling point was appeared to be mineralized 20-48% of initial TOC concentration. Consequently Nonylphenol seems more recalcitrant against biodegradation. BPA was not detected in the detection limit of ppb in the watershed of Daechung reservoir and Kum river. However 25 ppb concentration of BPA was detected at the influent of industrial wastewater treatment plant in Taejon.

  • PDF

Assessment of Heavy Metal(loid)s Pollution in Arable Soils near Industrial Complex in Gyeongsang Provinces of South Korea

  • Kim, Yong Gyun;Lee, Hyun Ho;Park, Hye Jin;Hong, Chang Oh
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.51 no.2
    • /
    • pp.128-141
    • /
    • 2018
  • Industrial complex releasing huge amounts of dusts, fumes and wastewater containing heavy metal(loid)s could be a source of heavy metal(loid)s pollution in arable soil. Heavy metal(loid)s pollution in arable soil adversely affect crops safety, subsequently human being. Hence, it is important to accurately assess the heavy metal(loid)s pollution in soil using pollution indices. The objectives of this study are 1) to compare assessment methods of heavy metal(loid)s pollution in arable soils located near industrial complex in Gyeongsang provinces and 2) to determine the relationship between concentration of plant available heavy metal(loid)s and chemical properties of soil. Soil samples were collected from 85 sites of arable lands nearby 10 industrial complex in Gyeongsang provinces. The average total concentration of all heavy metal(loid)s of the studied soils was higher than that of Korean arable soils but did not exceed the warning criteria established by the Soil Environmental Conservation Act of Korea. Only six sites of arable soils for the total concentration of As, Cu and Ni exceeded the warning criteria (As: $25mg\;kg^{-1}$, Cu: $150mg\;kg^{-1}$, Ni: $100mg\;kg^{-1}$). The contamination factor (CF) and geoaccumulation index ($I_{geo}$) of the heavy metal(loid)s in arable soils varied among the sampling sites, and the average values of As and Cd were relatively higher than that of other metals. Results of integrated indices of As and Cd in arable soils located near industrial complex indicated that some arable soils were moderately or heavily polluted. The plant available concentration of heavy metal(loid)s was negatively related to the soil pH and negative charge of soil. Available Cd, Pb, and Zn concentrations had relatively high correlation coefficient with pH and negative charge of soil when compared with other heavy metal(loid)s. Based on the above results, it might be a good soil management to control pH with soil amendments such as lime and compost to reduce phytoavailability of heavy metal(loid)s in arable soil located near industrial complex.