• Title/Summary/Keyword: wastes utilization

Search Result 161, Processing Time 0.026 seconds

Stable Microbial Community and Specific Beneficial Taxa Associated with Natural Healthy Banana Rhizosphere

  • Fu, Lin;Ou, Yannan;Shen, Zongzhuan;Wang, Beibei;Li, Rong;Shen, Qirong
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.10
    • /
    • pp.1624-1628
    • /
    • 2019
  • Banana planting altered microbial communities and induced the enrichment of Fusarium oxysporum in rhizosphere compared with that of forest soil. Diseased plant rhizosphere soil (WR) harbored increased pathogen abundance and showed distinct microbial structures from healthy plant rhizosphere soil (HR). The enriched taxon of Bordetella and key taxon of Chaetomium together with some other taxa showed negative associations with pathogen in HR, indicating their importance in pathogen inhibition. Furthermore, a more stable microbiota was observed in HR than in WR. Taken together, the lower pathogen abundance, specific beneficial microbial taxa and stable microbiota contributed to disease suppression.

Utilization of Poultry Processing Wastes

  • Linus G. Fonkwe;Rakesh K. Singh;Lee, Jun-Ho
    • Preventive Nutrition and Food Science
    • /
    • v.6 no.4
    • /
    • pp.257-262
    • /
    • 2001
  • Large amounts of poultry processing wastes including blood, feathers, offal, bones and manure are produced annually from the poultry industry. Over the past years, these products have been wasted and now there is a need for the treatment of these processing wastes. These processing wastes could be either discarded, a rather expensive option considering the cost of sewage disposal, or processed into animal feed or food for human consumption. This paper mainly deals with the various methods through which the different poultry processing wastes have been further processed and/or utilized for human flood or animal consumption. This paper also reviews steps involved in general poultry processing.

  • PDF

A Study on the Utilization of Industrial Solid Organic Wastes (I). The Physical and Chemical Characteristics of Industrial Solid Wastes with Regard to Fertilizer Value and Humus Sources (산업 고형유기폐물의 자원화에 관한 연구 (제1보) 산업 고형유기폐물의 비료와 Humus 원으로서의 물리적 및 화학적 특성에 관하여)

  • Park Nae Joung;Kim, Yong In
    • Journal of the Korean Chemical Society
    • /
    • v.19 no.4
    • /
    • pp.258-268
    • /
    • 1975
  • The physical and chemical characteristics of solid organic wastes from paper and pulp industries, tanneries, and food processing industries were studied with regard to fertilizer value as well as humus sources as a rational method of waste utilization. The pulp and paper mill wastes containing low mineral nutrients but high lignin may be utilized for soil amendments through humus preparation. Chemical treatment sludges of tannery wast water contained appreciable fertilizer nutrients andiliming materials, but utilization as fertilizers or soil amendments depends on the pollution effect of high chromium content, which has not been well understood. Food processing wastes may be utilized as organic fertilizers or micronutrient sources for plant. Some wastes containing high water-soluble sugars or lower C/N ratio than 20 may be utilized as additives for rapid humus preparation.

  • PDF

Utilization of Some Industrial Wastes for Producing of Polymeric Composite Materials

  • Hojieva, Alohida;Rustamov, Abduvali;Ahmedov, Akmal
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.11a
    • /
    • pp.95-98
    • /
    • 2003
  • Polymeric composite materials on the basis of some industrial wastes are obtained. Some physical parameters of experimental samples are determined. The analysis of exploitative properties of these polymer composite materials allows recommending them as a heat-insulating material in constructions.

  • PDF

Biogas Production and Utilization Technologies from Organic Waste (유기성폐기물을 이용한 바이오가스 생산 및 활용기술)

  • Heo, Nam-Hyo;Lee, Seung-Heon;Kim, Byeong-Ki
    • New & Renewable Energy
    • /
    • v.4 no.2
    • /
    • pp.21-30
    • /
    • 2008
  • Anaerobic digestion (AD) is the most promising method of treating and recycling of different organic wastes, such as OFMSW, household wastes, animal manure, agro-industrial wastes, industrial organic wastes and sewage sludge. During AD, i.e. degradation in the absence of oxygen, organic material is decomposed by anaerobes forming degestates such as an excellent fertilizer and biogas, a mixture of carbon dioxide and methane. AD has been one of the leading technologies that can make a large contribution to producing renewable energy and to reducing $CO_2$ and other GHG emission, it is becoming a key method for both waste treatment and recovery of a renewable fuel and other valuable co-products. A classification of the basic AD technologies for the production of biogas can be made according to the dry matter of biowaste and digestion temperature, which divide the AD process in wet and dry, mesophilic and thermophilic. The biogas produced from AD plant can be utilized as an alternative energy source, for lighting and cooking in case of small-scale, for CHP and vehicle fuel or fuel in industrials in case of large-scale. This paper provides an overview of the status of biogas production and utilization technologies.

  • PDF

Biogas Production and Utilization Technologies from Organic waste (유기성폐기물을 이용한 바이오가스 생산 및 활용기술)

  • Heo, Nam-Hyo;Lee, Seung-Heon;Kim, Byeong-Ki
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.202-205
    • /
    • 2008
  • Anaerobic digestion(AD) is the most promising method of treating and recycling of different organic wastes, such as OFMSW, household wastes, animal manure, agro-industrial wastes, industrial organic wastes and sewage sludge. During AD, i.e. degradation in the absence of oxygen, organic material is decomposed by anaerobes forming degestates such as an excellent fertilizer and biogas, a mixture of carbon dioxide and methane. AD has been one of the leading technologies that can make a large contribution to producing renewable energy and to reducing $CO_2$ and other GHG emission, it is becoming a key method for both waste treatment and recovery of a renewable fuel and other valuable co-products. A classification of the basic AD technologies for the production of biogas can be made according to the dry matter of biowaste and digestion temperature, which divide the AD process in wet and dry, mesophilic and thermophilic. The biogas produced from AD plant can be utilized as an alternative energy source, for lighting and cooking in case of small-scale, for CHP and vehicle fuel or fuel in industrials in case of large-scale. This paper provides an overview of the status of biogas production and utilization technologies.

  • PDF

A Case Study on the Farm Preference and the Use of Livestock Feces (가축분뇨 이용 및 농가 선호도에 관한 조사연구)

  • Kwon, Sung-Ku;Yoo, Duck-Ki
    • Korean Journal of Organic Agriculture
    • /
    • v.12 no.3
    • /
    • pp.249-264
    • /
    • 2004
  • High yield arable and crop farming demands a temporally and quantitatively determined application of plant nutrients according to field and culture. The nutrients may come from commercial fertilizers or from animal wastes. Regarding the dangers to soil, water and air, which come from current agricultural application measures for nitrogen, a sectoral approach for a nonpolluting liquid manure utilization can-not be used ally longer. An integrated system approach has to be found, leading to a drastic improvement of nutrient utilization and hence to a considerably reduced nutrient use. This can be only expected, if the organic manure can be applicated at times, when losses through leaching and volatilization can be minimized.

  • PDF

Nutrient Recycling : The North American Experience - Review -

  • Fontenot, J.P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.4
    • /
    • pp.642-650
    • /
    • 1999
  • Options available for utilization of animal wastes include sources of plant nutrients, feed ingredients for farm animals, substrate for methane generation, and substrate for microbial and insect protein synthesis. The wastes have the most economic value for use as animal feed. Performance of animals fed diets containing animal wastes is similar to that of animals fed conventional diets. Processing of animal wastes to be used as animal feed is necessary for destruction of pathogens, improvement of handling and storage characteristics, and maintenance or enhancement of palatability. Feeding of animal waste has not adversely affected the quality and taste of animal products. In the USA copper toxicity has been reported in sheep fed high-copper poultry litter, but this is not a serious problem with cattle. Potential pathogenic microorganisms in animal wastes are destroyed by processing such as heat treatment, ensiling and deep stacking. Incidents of botulism, caused by Clostridium botulinum, have been reported in cattle in some countries, and this problem was caused by the presence of poultry carcasses in litter. This problem has not occurred in the USA. With appropriate withdrawal, heavy metal, pesticide or medicinal drug accumulation in edible tissues of animals fed animal wastes is not a problem. Feeding of animal wastes is regulated by individual states in the USA. The practice is regulated in Canada, also. With good management, animal wastes can be used safely as animal feed.

Utilization of Fruit Processing Wastes in the Diet of Labeo rohita Fingerling

  • Deka, Abani;Sahu, N.P.;Jain, K.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.11
    • /
    • pp.1661-1665
    • /
    • 2003
  • A feeding trial was conducted for 60 days to study the utilization of fruits processing wastes as feed ingredient in the diet of Labeo rohita fingerlings. One hundred and sixty fingerlings (av. body weight, $1.65g{\pm}0.03$) were equally distributed in four experimental groups having 4 replicates each. Four different experimental diets were prepared by replacing wheat flour and rice bran with either orange (T2) (Cirtus qurantium), pineapple (T3) (Ananas spp. and Pseudananas spp.) or sweet lime (T4) (Citrus sinensis) wastes to the basal diet along with the control (T1, without any fruit wastes) keeping the CP level at around 40%. The water quality parameters like DO, $CO_2$, pH, total alkalinity, total hardness, ammonia and water temperature were recorded within the optimum range. The diet containing 25% pineapple wastes (T3) showed significantly higher growth in terms of SGR (1.50), FCR (2.09) and PER (1.19) than the other groups. However, growth of T4 and T2 groups were not significantly different than the control group (T1). Protease activity (17.17 unit/mg protein), protein digestibility (91.57%) and carbohydrate digestibility (41.62%) were not significantly different among the different groups. Survival of the fingerlings were not significantly different among the experimental groups. It concludes that waste of orange, pineapple and sweet lime can be used at 25% level as a substitute of wheat flour and rice bran in the diet of Labeo rohita.