• Title/Summary/Keyword: waste water sludge

Search Result 262, Processing Time 0.026 seconds

Performances of Ceramic-tube and Pall-ring Upflow Anaerobic Filters Treating a Dairy Waste (세라믹튜브 및 패킹형플라스틱 여재충전 상향류식 혐기성여상에 의한 유가공 폐수처리)

  • Hur, Joon-Moo;Chang, Duk;Pae, Hyung-Suk;Kim, Soo-Young
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.14 no.1
    • /
    • pp.37-44
    • /
    • 2000
  • Laboratory experiments were conducted to investigate the performances of anaerobic filters packed with ceramic tube and pall-ring media treating a dairy waste. The media packing volume was 65% of effective volume of anaerobic filter. Organics removals of anaerobic filters were maintained above 80% even at an organics loading rate of $10kgCOD/m^3/d$, and this was comparable to aerobic treatment of organic wastes. Organics removals of the ceramic tube anaerobic filters were always lower than those of the pall-ring anaerobic filters due to intrinsic physical property of ceramic tube, especially lower void space which caused to clogging and entrapment of biogas, substrate transfer limitation, and irregular evolution of biogas leading to loss of solids and biomass. This was clearly observed in higher concentration of TSS in the effluent from the ceramic tube anaerobic filter despite of higher retention capacity of TSS compared with pall-ring media. Vertical distribution of organics and solids in the filters showed above 90% of organics and solids in influent were removed below 20% of reactor height, and 50% of remaining organics and solids were removed though media packing zone. Effluent quality from the anaerobic filter was heavily depended on media itself as well as suspended biomass formed below media. It is therefore concluded that the type of media played an important role in biomass accumulation arid gas-liquid-solid separation efficiency. Type of media did not affect the start-up behaviors of the anaerobic filter, and supernatant from anaerobic digested sludge showed a good performance as a seeding materials.

  • PDF

Physicochemical Effect on Ultra Thermophilic Aerobic Composting Process (초고온 호기성 퇴비화의 물리·화학적 인자 평가)

  • Park, Seyong;Yoo, Euisang;Chung, Daihyuck;Lee, Jin;Kim, Moonil
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.11
    • /
    • pp.27-36
    • /
    • 2010
  • This study was conducted to evaluate physicochemical parameters; temperature, pH, C/N ratio, water content, organic contents and volume in a pilot-scale(capacity : $100m^3$) ultra thermophilic aerobic composting. There were three types input: municipal wasted sludge, livestock manure and slurry, and food waste produced in Jung-Eb city. Each target material was carried out by the first fermentation(organic waste + seed culture) and the second one(organic waste + seed culture + recycle compost), respectively. During composting, only with supply of air and mixing, the temperature increased $90{\sim}105^{\circ}C$ after every mixing in both periods. The changes of pH, $O_2$, $CO_2$ and $NH_3$ represented typical organic decomposition pattern by microorganisms. Also, all other physicochemical parameters of ultra thermophilic aerobic composting process showed similar or better performance than these of general aerobic composting. Heavy metal concentration of fermented compost adapted to compost fertilizer regulation standard in the heavy metal and hazardous analysis.

A Study on Effects of Rainfall on Contamination at Stream Around the Developed Quarry (강우가 석산개발 지역 주변 하천의 오염에 미치는 영향에 관한 연구)

  • Lee, Yang-Kyu;Han, Jung-Geun;Hong, Kikwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.1
    • /
    • pp.63-70
    • /
    • 2014
  • This paper describes the influence of rainfall on contamination at stream around the developed quarry. The investigation results are analyzed to evaluate the relationship rainfall and heavy metals (or water pollution). In the relationship rainfall and heavy metals, the result showed that the heavy metal contaminations are caused by boulder stone, waste residue and stone sludge, which is reacted with the direct contamination source, in the burried layer. It also found that the water flow change of stream according to the rainfall increase affected the large effect to a contamination level of heavy metal. the water pollution was increased by time changed from the rainy season to the dry season. That is, a lot of suspended solids had been discharge from the developed quarry due to rainfall increase, and then pollution level of water increases as the undercurrent of suspended solids is generated in stream due to rainfall decrease. Therefore, it analyzed that continuous causes of heavy metal contamination and water pollution in stream are materials in the burried layer and a discharge of pollution source from the developed quarry due to rainfall.

A Study on the Thermal Characteristics of Waste Organic Sludges Generated from the Industrial Complex -Paper and Beverage Manufacturing Industries- (산업단지에서 배출되는 폐 유기성 슬러지의 열적 특성 -제지업 및 음식료업을 중심으로-)

  • Shon, Byung-Hyun;Lee, Joo-Ho;Jung, Moon-Hun;Kim, Min-Choul;Ko, Ju-Hyun;Park, Hung-Suck;Lee, Gang-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.5
    • /
    • pp.1359-1367
    • /
    • 2008
  • We analyzed the physical and chemical properties such as proximate analysis, ultimate analysis, heating values, thermogravimetric analysis, and combustion test for the organic sludges generated from paper and beverage manufacturing industries in the industrial complex. The average water and combustible content of the organic sludges from paper and beverage manufacturing industries were 66.07% and 14.67%, 54.98% and 26.77%, respectively. From the ultimate analysis of the organic sludges, C, H, O, N, and S compositions were 21.75%, 3.42%, 32.70%, 0.63%, and 0.30%, respectively. For beverage manufacturing industries, C, H, O, N, and S compositions were 39.88%, 4.28%, 23.20%. 2.65%, and 0.35%, respectively. According to the results of investigating the lower heating values by Dulong's equation, 1 sludge(T company) was on the range of over 2,000 kcal/kg. This sludge could be directly applied to industries which try to use the energy by direct incineration. From the TGA test, the minimum combustion temperature of A company's sludge was about $700^{\circ}C$ for direct use for energy and that of 3 sludges(C, I, and T company) were at least over $800^{\circ}C$.

Organic Wastewater Treatment Using Modified Fenton's Oxidation (변형 펜턴산화법을 이용한 유기폐수의 처리)

  • Kim, Ji Yeon;Yoon, Tai Il;Park, Se Jin
    • Clean Technology
    • /
    • v.5 no.1
    • /
    • pp.49-61
    • /
    • 1999
  • Fenton's oxidation can improve the biodegradability of refractory organic wastewater by generating $OH{\cdot}$ which is one of the most reactive species. Fenton's reagent is used to treat a variety of industrial waste containing a range of toxic organic compounds. But this process cannot be economical because of high chemical cost of $H_2O_2$, ferrous ion solution and high sludge disposal cost. In this study, we proposed a modified Fenton's oxidation process which can reduce the reagent cost and obtain better removal efficiencies with less Fenton's reagents, and have a good potential of sludge recycling. In modified Fenton reaction, ferrous ion solution is adjusted to optimal pH with NaOH. Then it added to the sample and reacted to $H_2O_2$. For the experiment, synthetic wastewater made of phenol, which is one of the typical water pollutants, was used and the ionic strength of this wastewater was controlled by adding $NaHCO_3$. The effects of DO, ionic strength, and $H_2O_2$ dosing methods were investigated. As a result, modified Fenton's treatment efficiencies are better than conventional Fenton's reaction treating leachate and dyeing wastewater. And modified Fenton's treatment efficiencies combined to the sludge recycling for a half of Iron dosage are as good as the conventional Fenton's for a normal Iron dosage.

  • PDF

Effects of Water Quality Improvement by Porosity of Fill Materials in Mattress/Filter System (Mattress/Filter 채움재의 공극률에 따른 하천수질 개선효과)

  • Ko, Jin Seok;Lee, Sung Yun;Heo, Chang Hwan;Jee, Hong Kee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1B
    • /
    • pp.51-60
    • /
    • 2006
  • Water quality improvement in mattress/filter system using porous material like slag from industrial activity and zeolite that has been studied for environment improvement and pollution abatement is very useful in polluted stagnant stream channel. Slag is consisted of CaO, $SiO_2$, $Al_2O_3$ and $Fe_2O_3$. Slag with large specific surface area of porosity has been used such as sludge settling and adsorptive materials. Because slag is porous, it can be used for purification filter. As slag is used as filled materials of mattress/filter system and the system has good advantages for the waste water treatment, water recycling, and the improvement of water quality at the same time and so on. Because zeolite has much advantage of cation exchange, adsorption, catalyst and dehydration characteristics, It is used for environment improvement of livestock farms, treatment of artificial sewage and waste water, improvement of drinking water quality, radioactive waste disposal and radioactive material pollution control. In this study, according to verifying effects of water quality improvement of fill materials by porosity that 38.6%, 45.8% and 49.8% respectively in the stagnant stream channel, water quality monitoring of inflow and outflow was conducted on pH, DO, BOD, COD, SS, T-N and T-P. Mattress/filter system was able to accelerate water quality improvement by biofilter as waste water flows through gap of mattress/filter fill materials and by contact catalysis, absorption, catabolism by biofilm. Mattress/filter system used slag and zeolite forms biofilm easily and accelerates adsorption of organic matter. As a result, mattress/filter system increases water self-purification and accelerates water quality improvement available for stream water clean-up.

A Study on the Trend and Utilization of Stone Waste (석재폐기물 현황 및 활용 연구)

  • Chea, Kwang-Seok;Lee, Young Geun;Koo, Namin;Yang, Hee Moon
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.3
    • /
    • pp.333-344
    • /
    • 2022
  • The quarrying and utilization of natural building stones such as granite and marble are rapidly emerging in developing countries. A huge amount of wastes is being generated during the processing, cutting and sizing of these stones to make them useable. These wastes are disposed of in the open environment and the toxic nature of these wastes negatively affects the environment and human health. The growth trend in the world stone industry was confirmed in output for 2019, increasing more than one percent and reaching a new peak of some 155 million tons, excluding quarry discards. Per-capita stone use rose to 268 square meters per thousand persons (m2/1,000 inh), from 266 the previous year and 177 in 2001. However, we have to take into consideration that the world's gross quarrying production was about 316 million tons (100%) in 2019; about 53% of that amount, however, is regarded as quarrying waste. With regards to the stone processing stage, we have noticed that the world production has reached 91.15 million tons (29%), and consequently this means that 63.35 million tons of stone-processing scraps is produced. Therefore, we can say that, on a global level, if the quantity of material extracted in the quarry is 100%, the total percentage of waste is about 71%. This raises a substantial problem from the environmental, economical and social point of view. There are essentially three ways of dealing with inorganic waste, namely, reuse, recycling, or disposal in landfills. Reuse and recycling are the preferred waste management methods that consider environmental sustainability and the opportunity to generate important economic returns. Although there are many possible applications for stone waste, they can be summarized into three main general applications, namely, fillers for binders, ceramic formulations, and environmental applications. The use of residual sludge for substrate production seems to be highly promising: the substrate can be used for quarry rehabilitation and in the rehabilitation of industrial sites. This new product (artificial soil) could be included in the list of the materials to use in addition to topsoil for civil works, railway embankments roundabouts and stone sludge wastes could be used for the neutralization of acidic soil to increase the yield. Stone waste is also possible to find several examples of studies for the recovery of mineral residues, including the extraction of metallic elements, and mineral components, the production of construction raw materials, power generation, building materials, and gas and water treatment.

A Study on the Operation Aid Expert System for Activated Sludge Process (활성슬러지 공정에서의 조업지원용 전문가 시스템에 관한 연구)

  • Cho, Wook-Sang;Lee, Jin-Woo;Park, Sang-Jin;Won, Jong-Sik;Kim, Sang-Wook
    • Applied Chemistry for Engineering
    • /
    • v.7 no.2
    • /
    • pp.371-378
    • /
    • 1996
  • A prototype of expert system which can support the operation for the municipal waste water treatment plant located at Kyoung-Ki Do, Kwang-ju Kun was developed and tested. This system provides (i) tracking the cause of the problem, (ii) analysis, and (iii) solution Knowledge-base consists of about 100 production-rules for the biological wastewater process, such as bio-reactor and final clarifier. Rules were obtained from the analysis of the problems such as sludge bulking. The system provides stable process control and management and effectively helps inexperienced operators with advanced and standard technologies. Future works will focus to develop a statistical process control model and associate with expert system. The control model can process the operation data statistically; analyze the relationship between affecting factors and control variables; and provide optimum operation parameters.

  • PDF

Introduction of KIER Pyrolysis Process and 3,000 ton/yr Demonstration Plant (KIER의 열분해유화 공정 기술과 실증플랜트 소개)

  • Shin, Dae-Hyun;Jeon, Sang-Gu;Kim, Kwang-Ho;Lee, Kyong-Hwan;Roh, Nam-Sun;Lee, Ki-Bong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.479-482
    • /
    • 2008
  • Since late of 2000, KIER has developed a novel pyrolysis process for production of fuel oils from polymer wastes. It could have been possible due to large-scale funding of the Resource Recycling R&D Center. The target was to develop an uncatalyzed, continuous and automatic process producing oils that can be used as a fuel for small-scale industrial boilers. The process development has proceeded in three stages bench-scale unit, pilot plant and demonstration plant. As a result, the demonstration plant having capacity of 3,000 tons/year has been constructed and is currently under test operation for optimization of operation conditions. The process consisted of four parts ; feeding system, cracking reactor, refining system and others. Raw materials were pretreated via shredding and classifying to remove minerals, water, etc. There were 3 kind of products, oils(80%), gas(15%), carbonic residue(5%). The main products i.e. oils were gasoline and diesel. The calorific value of gas has been found to be about 18,000kcal/$m^3$ which is similar to petroleum gas and shows that it could be used as a process fuel. Key technologies adopted in the process are 1) Recirculation of feed for rapid melting and enhancement of fluidity for automatic control of system, 2) Tubular reactor specially-designed for heavy heat flux and prevention of coking, 3)Recirculation of heavy fraction for prevention of wax formation, and 4) continuous removal & re-reaction of sludge for high yield of main product (oil) and minimization of residue. The advantages of the process are full automation, continuous operation, no requirement of catalyst, minimization of coking and sludge problems, maximizing the product(fuel oil) yield and purity, low initial investment and operation costs and environment- friendly process. In this presentation, background of pyrolysis technology development, the details of KIER pyrolysis process flow, key technologies and the performances of the process will be discussed in detail.

  • PDF

Biochemical Methane Potential of Agricultural Waste Biomass (농산 바이오매스의 메탄 생산 퍼텐셜)

  • Shin, Kook-Sik;Kim, Chang-Hyun;Lee, Sang-Eun;Yoon, Young-Man
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.5
    • /
    • pp.903-915
    • /
    • 2011
  • Recently, anaerobic methane production of agricultural waste biomass has received increasing attention. Until now domestic BMP (Biochemical methane potential) studies concerned with agricultural waste biomass have concentrated on the several waste biomass such as livestock manure, food waste, and sewage sludge from WWTP (Waste water treatment plant). Especially, the lack of standardization study of BMP assay method has caused the confused comprehension and interpretation in the comparison of BMP results from various researchers. Germany and USA had established the standard methods, VDI 4630 and ASTM E2170-01, for the analysis of BMP and anaerobic organic degradation, respectively. In this review, BMP was defined in the aspect of organic material represented as COD (Chemical oxygen demand) and VS (Volatile solid), and the influence of several parameters on the methane potential of the feedstock was presented. In the investigation of domestic BMP case studies, BMP results of 18 biomass species generating from agriculture and agro-industry were presented. And BMP results of crop species reported from foreign case studies were presented according to the classification system of crops such as food crop, vegetables, oil seed and specialty crop, orchards, and fodder and energy crop. This review emphasizes the urgent need for characterizing the innumerable kind of biomass by their capability on methane production.