• Title/Summary/Keyword: waste vegetable oil

Search Result 46, Processing Time 0.031 seconds

Effects of crude glycerin from waste vegetable oil in diets on performance and carcass characteristics of feedlot goats

  • Chanjula, Pin;Cherdthong, Anusorn
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.4
    • /
    • pp.514-521
    • /
    • 2018
  • Objective: This experiment was conducted to investigate the effects of crude glycerin from waste vegetable oil (CGWVO) on performance, carcass traits, meat quality, and muscle chemical composition. Methods: Twenty-four crossbred (Thai Native${\times}$Anglo Nubian) uncastrated male goats ($16.8{\pm}0.46kg$ body weight [BW]) were assigned to a completely randomized design and subjected to four experimental diets containing 0%, 2%, 4%, and 6% of CGWVO (63.42% of glycerol and 47.78% of crude fat) on a dry matter (DM) basis. The diets were offered ad libitum as total mixed rations twice daily. The feed intake, feeding behavior, growth performance, carcass and meat traits, and muscle chemical composition were evaluated. Results: Based on this experiment, there were significant differences (p>0.05) among groups regarding DM intake, growth performance, and carcass traits where goats receiving 6% of CGWVO had lower daily DM intake, growth performance, and carcass traits than those fed on 0%, 2%, and 4% of CGWVO. There were no effects of CGWVO on carcass length, carcass width, Longissimus muscle (LM) area, Warner-Bratzler shear force, pH and color of LM at 45 min after slaughter, as well as on other carcass cut and muscle chemical composition. Conclusion: In conclusion, the addition of up to 4% of DM in the diets for crossbred finishing goats seems to be the most interesting strategy, since it promotes greatest animal performance. Moreover, this study was a suitable approach to exploit the use of biodiesel production from waste vegetable oil for goat production.

Fabrication of nickel nanoparticles-embedded carbon particles by solution plasma in waste vegetable oil

  • Pansuwan, Gun;Phuksawattanachai, Surayouth;Kerdthip, Kraiphum;Sungworawongpana, Nathas;Nounjeen, Sarun;Anantachaisilp, Suranan;Kang, Jun;Panomsuwan, Gasidit;Ueno, Tomonaga;Saito, Nagahiro;Pootawang, Panuphong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.10
    • /
    • pp.894-898
    • /
    • 2016
  • Solution plasma is a unique method which provides a direct discharge in solutions. It is one of the promising techniques for various applications including the synthesis of metallic/non-metallic nanomaterials, decomposition of organic compounds, and the removal of microorganism. In the context of nanomaterial syntheses, solution plasma has been utilized to produce carbon nanoparticles and metallic-carbon nanoparticle systems. The main purpose of this study was to synthesize nickel nanoparticles embedded in a matrix of carbon particles by solution plasma in one-step using waste vegetable oil as the carbon source. The experimental setup was done by simply connecting a bipolar pulsed power generator to nickel electrodes, which were submerged in the waste vegetable oil. Black powders of the nickel nanoparticles-embedded carbon (NiNPs/Carbon) particles were successfully obtained after discharging for 90 min. The morphology of the synthesized NiNPs/Carbon was investigated by a scanning electron microscope, which revealed a good dispersion of NiNPs in the carbon-particle matrix. The X-ray diffraction of NiNPs/Carbon clearly showed the co-existence of crystalline Ni nanostructures and amorphous carbon. The crystallite size of NiNPs (through the Ni (111) diffraction plane), as calculated by the Scherrer equation was found to be 64 nm. In addition, the catalytic activity of NiNPs/Carbon was evaluated by cyclic voltammetry in an acid solution. It was found that NiNPs/Carbon did not show a significant catalytic activity in the acid solution. Although this work might not be helpful in enhancing the activity of the fuel cell catalysts, it is expected to find application in other processes such as the CO conversion (by oxidation) and cyclization of organic compounds.

Wear, Oxidation and Shear Characteristics of Mixed Lubricating Oil (Mineral/Vegetable oil) with ZnDTP (ZnDTP를 첨가한 혼합윤활유(광유/식물성 오일)의 마모, 산화 및 전단 특성)

  • Lim, TaeYoon;Kim, YangHoe;Na, Byung-Ki
    • Tribology and Lubricants
    • /
    • v.34 no.4
    • /
    • pp.160-167
    • /
    • 2018
  • Vegetable oils can contribute to the goal of energy independence and security owing to their naturally renewable resources. One of the representative vegetable oils is biodiesel, which is being used in domestic and European markets as a blended fuel with automotive diesel. Vegetable oils are promising candidates as base fluids to replace petroleum lubricants because of their excellent lubricity and biodegradability. We prepared biodiesel with a purity of 99.9% via the esterification of waste cooking oil. Blended biodiesel and Petro-lube base oil were mixed to produce five types of mixed lubricating oil. We analyzed the various characteristics of the blended biodiesel with Petro-lube base oil for different blending ratios. The lubricity of the vegetable lubricant improves as the content of biodiesel increases. In addition, since zinc dialkyldithiophosphates (ZnDTPs) are widely used as multifunctional additives in petroleum-based lubricants, we optimized the blending ratio for lubricity, oxidation stability, and shear stability by adding ZnDTP as a performance additive to improve the biodiesel properties, such as oxidation stability and hydrolysis. The optimized lubricants improve by approximately 25% in lubricity and by 20 times in oxidation stability and shear stability after the addition of ZnDTP.

Degumming Effect on Vegetable oil of Degumming agent (각종 탈검제에 의한 식물성 기름의 탈검효과)

  • 김덕숙;안명수
    • Korean journal of food and cookery science
    • /
    • v.4 no.1
    • /
    • pp.27-32
    • /
    • 1988
  • The almost similar degumming effect was obtained by using oxalic acid instead of phosphoric acid, which also improves waste-water treatment. At this point, solution of Phosphoric, Acetic, Citric, Oxalic, and Nitric acid were used for degumming of rapeseed and soybean oil. Compared with Phosphoric(PA) and Oxalic acid(OA) were showed a simillar degumming effect in these vegetable oils. In rapeseed oil of 85% PA treating group and 5,10% OA fretting group, residual soap and phosphorus content in neutralized oil, color in bleached oil, and peroxide value and fatty acid content in deodrized oil were showed to simillar result. Soybean oil as well as rapeseed oil were showed to similar result. As a result, we could comfirmed substitutive possibility, which change PA into OA as a degumming agent. In the other hand, waste waters were obtained from 55% PA treating group and 10% OA treating group. Analytical result for this waste waters has showed a wide difference, especially in the BOD and COD. The amount of treating agents and time required in the precipitation seperation and chemical treatment each 3 and 1.7 times, which is PA treating group than OA treating group. We have investigated both the simillar degumming effect by OA solution and an alternative the pollution program means of a chemical treatment process is not possible.

  • PDF

Development of Substrate and Cultural Method for the Cultivation of Pleurotus sajor-caju (느타리 버섯(Pleurotus sajor-caju) 재배를 위한 기질 및 재배방법의 개발)

  • Hong, B.S.;Kim, S.J.;Song, C.H.;Hwang, S.Y.;Yang, H.C.
    • The Korean Journal of Mycology
    • /
    • v.20 no.4
    • /
    • pp.354-359
    • /
    • 1992
  • The effect of the addition of various vegetable oils on the mycelial growth was studied. Most vegetable oils were proved to be stimulative for the mycelial growth, and the best mycelial growth (12 mg/ml) was obtained with the addition of cotton seed oil. Several agricultural wastes i.e., rice straw, peanut hull, sawdust, rice hull, cocoa hull, coffee waste and beer waste were empolyed as substrates for sporophore production of p. sajor-caju. The biological efficiency(BE) for sporophore productions of rice straw and peanut hull were 36.4% and 32.6%, respectively. The highest yield of sporophore was obtained from the mixture of rice straw (50%) and beer waste (50%)(BE 109.6%) followed by peanut hull (50%) and beer waste (50%)(BE; 74.5%).

  • PDF

The Effect of Soybean Oil and Waste Chicken Oil Mixing Ratio on Biodiesel Characteristics (대두유와 폐계유의 혼합비가 바이오디젤 특성에 미치는 영향)

  • Kwack, Jong Won;Kim, Tae Han
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.261-267
    • /
    • 2017
  • The interest in biodiesel is increasing rapidly. As a result, the price of vegetable oil that is used as a raw material for biodiesel is skyrocketing. Studies of biodiesel using animal waste as a means of solving these problems are underway. Biodiesel produced from animal fat contains considerably more saturated fatty acids than that produced from vegetable oil. In addition, it has a high cetane number and a high heating value. On the other hand, the fluidity decreases at lower temperatures because of the large amount of saturated fatty acids. For the biodiesel production, waste chicken oil and soybean oil were first purified. The raw materials were mixed at various ratios from 1:9 to 9:1. The methanol / oil molar ratio was also changed from 7 mol to 15 mol. The entire reaction time was one hour. The results showed that the optimal mixing ratio of soybean oil to waste chicken oil was 3:7, and the optimal methanol / oil molar ratio was 13. Moreover, the BD yield was 90.2%, the FAME content was 96.6%, and the LAME content was 4.1%. This result satisfied the Korea Industrial Standard (KSM2413).

A Study on the Emission Characteristics for Blended Power Bio-Fuel Oil (발전용 바이오중유의 혼합비율에 따른 배출가스 특성 연구)

  • HA, JONG-HAN;JEON, CHEOL-HWAN;KWON, YONG-CHAI
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.5
    • /
    • pp.484-492
    • /
    • 2015
  • As our government is actively introducing the RPS (Renewable Portfolio Standards) as a national renewable energy obligation policy, power producers are using the various renewable energy to meet the RPS supply quota since 2012. Recently, it is appling to use power bio-fuel oil in bio-fuel oil demonstration project with power companies. In general, power bio-fuel oils are composed of mixture products of vegetable oil, animal fat, fatty acid ester and waste oil. It is already developing for a power plant as a renewable energy abroad. In Korea, it is studying a 100% combustion and blended combustion of heavy fuel oil and bio-fuel oil. In this study, we investigated fuel characteristics of mixed power bio-fuel oil and its emission performance. Especially, it was reduced emissions of bio-oil in industrial boilers due to bio-fuel properties as compare with fuel oil.

Fuel properties of biodiesel produced from beef-tallow and corn oil blends based on the variation in the fatty acid methyl ester composition

  • Woo, Duk Gam;Kim, Tae Han
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.4
    • /
    • pp.941-953
    • /
    • 2019
  • Biodiesels are being explored as a clean energy alternative to regular diesel, which causes pollution. In this study, the optimum conditions for producing biodiesel (BD) by combining beef tallow, an animal waste resource with a high saturated fatty acid content, and corn oil, a vegetable oil with a high unsaturated fatty acid content, were investigated, and the fuel properties were analyzed. Furthermore, Multivariate Analysis of Variance (MANOVA) was used to verify the optimum conditions for producing biodiesel. The influences of control factors, such as the oil blend ratio and methanol to oil molar ratio, on the fatty acid methyl ester and biodiesel production yield were investigated. As a result, the optimum condition for producing blended biodiesel was verified to be tallow to corn oil blend ratio of 7 : 3 (TACO7) and a methanol to oil molar ratio of 14 : 1. Moreover, the interaction between the oil blend ratio and the methanol to oil molar ratio has the most crucial effects on the production of oil blended biodiesel. In conclusion, the analysis results of the fuel properties of TACO7 BD satisfied the BD quality standard, and thus, the viability of BD blended with waste tallow as fuel was verified.

The Synthesis and characterization of of asphalt anti-stripping agents, amides synthesized from waste oils (폐오일을 이용한 아마이드계 아스팔트 박리방지제의 합성 및 특성 분석)

  • Lee, Sang Ah;Kim, Jiwung;Cho, Namjun
    • Analytical Science and Technology
    • /
    • v.29 no.6
    • /
    • pp.300-304
    • /
    • 2016
  • The asphalt antistripping agents were synthesized from ethylenediamine (ED) or N,N'-bis(2-hydroxyethyl)ethylenediamine (HEED) with three different fatty acids. The formation of amide bonds were successfully performed and confirmed by FT-IR and $^1H-NMR$ data. The adhesive properties of antistripping agents were compared in terms of contact angle and BBS test. The reaction product of ED with waste animal fat exhibited the most hydrophobic by the contact angle measurement, and the strongest water resistance of 94 % by BBS test. However, the reaction product of ED with waste vegetable oil showed the strongest absolute bond strength of ca. 3610 and 3227 kPa for before and after water conditioning, respectively. For the bond strength in general, the reaction products of ED were superior to HEED reaction products, and the reaction products of animal fat and waste vegetable oil were superior to those of pure soybean oil.

Biodiesel Production from Waste Oils Mixed with Animal Tallows and Vegetable Oil by Transesterification Using Ultrasonic Irradiation (초음파를 이용한 동식물성 혼합 폐유지로부터 바이오디젤 제조)

  • Chung, Kyong-Hwan;Park, Byung-Geon
    • Korean Chemical Engineering Research
    • /
    • v.51 no.4
    • /
    • pp.487-492
    • /
    • 2013
  • Transesterifications of waste oils mixed with animal tallows and vegetable oil by ultrasonic energy were examined over various catalysts for biodiesel production. Reaction activities of the transesterification were evaluated to the ultrasonic energy and thermal energy. The physicochemical properties of feedstock and products were also investigated to the biodiesels produced from the oils in the reaction using ultrasonic energy. The highest fatty acid methyl ester (FAME) yield was obtained on the potassium hydroxide catalyst in the transesterification by ultrasonic irradiation. The effective reaction conditions by ultrasonic energy were 0.5 wt% catalyst loading and 6:1 molar ratio of methanol to the mixed oils. The reaction rate of the transesterification by ultrasonic energy was faster than that by thermal energy. The highest yields of FAME were obtained as 80% in 5 min and the reaction equilibrium reached at that time.