• 제목/요약/키워드: waste treatments

검색결과 240건 처리시간 0.026초

육묘용 상토내의 폐암면 혼합비율이 메리골드 플러그묘의 생육에 미치는 영향 (Effect of Blending Rate of Waste Rockwool in Nursery Media on Growth of Marygold Plug Seedlings)

  • 전하준;황진규
    • 생물환경조절학회지
    • /
    • 제16권1호
    • /
    • pp.27-31
    • /
    • 2007
  • 수경재배의 폐암면 처리문제를 해결하고 수입의존도가 높은 육묘용 상토 자재의 개발로 육묘산엽의 발전에 기여하고자 폐암면의 혼합비율을 달리한 플러그용 육묘상토를 조성하여 메리골드의 생육에 대한 효과를 조사하였다. 시판 육묘상토를 대조구로 하고, 시판 육묘상토에 이용되는 코코피트 대신에 폐암면을 10, 30, 50%로 혼합하여 혼합상토를 조제하여 50공 트레이에 파종하고 생육조사를 실시하였다. 메리골드의 발아율은 처리구간에 유의한 차이를 나타내지 않았다. 초장, 엽수, 경경, 엽면적과 지상부 및 지하부의 건물중 및 생체중은 시판상토와 폐암면 50% 혼합 처리구에서 양호하였다. 그러나 폐암면 30 및 10% 혼합처리구에서는 시판상토에 비해서 생육이 낮았는데 그 결과에 대해서는 정확한 원인을 밝힐 수 없었다. 본 실험에서는 폐암면을 플러그용 육묘상토의 자재로서 충분히 활용할 수 있다는 가능성을 보여 주었으며, 폐암면의 적정한 혼합비율에 대해서는 계속적인 실험이 필요한 것으로 생각되었다.

AHP를 이용한 폐수정화공정의 막기술 선정에 관한 연구 (An Application of the Analytic Hierarchy Process to the Selection of the Membrane Systems of Waste Water Treatment)

  • 홍순욱;김강민;김태현;조근태
    • 산업공학
    • /
    • 제12권4호
    • /
    • pp.602-616
    • /
    • 1999
  • Recently, due to the primary emphasis of environmental problem, the proper selection of the membrane systems necessary for waste water treatment has been one of the critical issues in the industrial sector. This paper shows how an Analytic Hierarchy Process (AHP) model can be used for assessing the performance of selected membrane systems: ultrafiltration, microfiltration, reverse osmosis, and electrodialysis essential for waste water treatments. The final results show that ultrafiltration is the most attractive membrane system to use in a water recycling system, followed by microfiltration, reverse osmosis and electrodialysis. This is consistent with the information that we found with respect to the elements that were taken into consideration. Sensitivity analysis is also provided here.

  • PDF

Development of Eco Burner Ash Melting Furnace System

  • Sekiguchi, Yoshitoshi;Hamabe, Kohei;Momoda, Shigeru
    • 한국자원리싸이클링학회:학술대회논문집
    • /
    • 한국자원리싸이클링학회 2001년도 정기총회 특별강연 및 춘계학술연구발표회(2)
    • /
    • pp.19-22
    • /
    • 2001
  • In recent years, the creation of waste recycling society has been required to cope with the traditional ways of waste treatments. In accordance with the package recycling law in force, calls for the developments of new waste treatment techniques suitable for 21st century are growing higher. A new ash melting furnace system named Eco Burner Ash Melting Furnace System has been developed. It is a burner type ash melting system in which the fluffs made of the plastics segregated from municipal solid wastes are directly fired at high temperature in the furnace. This system provides an economical ash melting system because plastic wastes or paper scraps that have heretofore been considered hard to recycle are used in compensation for fossil fuel. In this paper, we describe the ash melting test results obtained from a substantiative facility.

  • PDF

Influence of carbon type and carbon to nitrogen ratio on the biochemical methane potential, pH, and ammonia nitrogen in anaerobic digestion

  • Choi, Yongjun;Ryu, Jeongwon;Lee, Sang Rak
    • Journal of Animal Science and Technology
    • /
    • 제62권1호
    • /
    • pp.74-83
    • /
    • 2020
  • Organic waste used as a feedstock in the anaerobic digestion (AD), it includes carbon and nitrogen. Carbon and nitrogen have an effect on the various digestive characteristics during AD, however, the study is rare about those of the interaction. This study investigates the influence of carbon type and carbon to nitrogens (C/N ratios) on the AD characteristics of organic waste. Experimental treatments involved a combination of three carbon types with three C/N ratios. The AD tests were carried out using a 125-mL serum bottle at a constant temperature of 37℃ and moisture 95% for 18 days. Degradation pattern shows the difference among three-carbon treatments, the starch group was faster than other groups. Maximum methane production date was similar between starch (9.96 ± 0.05 day) and xylan group (10.0 ± 0.52 day), those of the cellulose group (14.6 ± 1.80 day) was slower than other groups (p < 0.05). The lag phase was only affected by the carbon type (p < 0.05). Ammonia nitrogen was mainly affected by nitrogen concentration regardless of carbon type (p < 0.05). This study showed that xylan is useful as feedstock in order to decrease the lag phase, and it showed that ammonia was independently affected by the nitrogen concentration.

남은 음식물발효사료가 산란계의 난생산성과 계란품질에 미치는 영향 (The Effects of Feeding Fermented Food waste on the Egg Production and Egg Quality in Laying Hen)

  • 정승헌;이상락;김철;안정제;맹원재;권윤정
    • 한국가금학회지
    • /
    • 제27권1호
    • /
    • pp.7-12
    • /
    • 2000
  • An experiment was conducted to investigate the effects of feeding fermented food waste on the egg production and egg qualities in laying hens. A lot of 30 commercial layer(ISA Brown) at the age 58 weeks were placed in individual of 80% commercial feed and 20% fermented food waste(C80%+F20%), a mixture of 50% commercial feed and 50% fermented food waste (C50%+F50%), and a mixture of 20% commercial feed and 80% fermented food waste (C20%+F80%). Daily measurements were made on feed intake, egg production rate, egg weight, yolk color, Haugh unit, shell color during the experimental period. At the end of the experiment, body weight change and egg cholesterol contents were determined. The results indicate that up to 50% of basal diet could be supplied by fermented food waste with little depression in feed intake and efficiency in egg production (p<0.01). Egg weight, egg shell thickness and Haugh units were not significant different between the treatments and the control. Egg color quality improved with increasing the proportion of the fermented food waste in the diet.

  • PDF

가축분뇨 및 음식물쓰레기의 혐기성 소화 병합처리 시 VS 제거효율과 메탄 발생량의 관한 연구 (A Study on VS Removal Efficiency and Methane Emission in Combined Anaerobic Digestion of Livestock Manure and Food Waste)

  • 최영익;지현조;정진희;정병길;김정권
    • 한국환경과학회지
    • /
    • 제27권9호
    • /
    • pp.737-742
    • /
    • 2018
  • Livestock manure treatments have become a more serious problem because massive environmental pollutions such as green and red tides caused by non-point pollution sources from livestock manures have emerged as a serious social issue. In addition, more food wastes are being produced due to population growth and increased income level. Since the London Convention has banned the ocean dumping of wastes, some other waste treatment methods for land disposal had to be developed and applied. At the same time, researches have been conducted to develop alternative energy sources from various types of wastes. As a result, anaerobic digestion as a waste treatment method has become an attractive solution. In this study has three objectives: first, to identify the physical properties of the mixture of livestock wastewater and food waste when combining food waste treatment with the conventional livestock manure treatment based on anaerobic mesophilic digestion; second, to find the ideal ratio of waste mixture that could maximize the collection efficiency of methane ($CH_4$) from the anaerobic digestion process; and third, to promote $CH_4$ production by comparing the biodegradability. As a result of comparing the reactors R1, R2, and R3, each containing a mixture of food waste and livestock manure at the ratio of 5:5, 7:3, and 3:7, respectively, R2 showed the optimum treatment efficiencies for the removal of Total Solids (TS) and Volatile Solids (VS), $CH_4$ production, and biodegradability.

Effects of Waste Nutrient Solution on Growth of Chinese Cabbage (Brassica campestris L.) in Korea

  • Choi, Bong-Su;Lee, Sang-Soo;Ok, Yong-Sik
    • 한국환경농학회지
    • /
    • 제30권2호
    • /
    • pp.125-131
    • /
    • 2011
  • BACKGROUND: Reuse of waste nutrient solution for the cultivation of crops could lead to considerable conservation of water resources, plant nutrients, and water quality. Therefore, this study was conducted to evaluate the potential for reducing the use of chemical fertilizer in Chinese cabbage cultivation via the reuse of waste nutrient solution as an alternative irrigation resource. METHODS AND RESULTS: The nutrients supplied in the waste nutrient solution consisted of 1474.5, 1285.1, 991.6, and 872.6 mg/L for $K+$, ${NO_3}^-$, $Ca^{2+}$ and ${SO_4}^{2-}$, respectively. At 56 days after transplanting (DAT), the leaf length of Chinese cabbage plants irrigated with the waste nutrient solution treatment was significantly higher than that of plants irrigated using a conventional groundwater treatment. Additionally, the leaf width, fresh weight and dry weight of the plants irrigated with the waste nutrient solution were similar or greater than that of plants irrigated with a conventional treatment. Furthermore, the growth of plants treated with the waste nutrient solution +25% fertilizer was the highest among all tested treatments. CONCLUSION(s): These results indicate that the waste nutrient solution can be used as an alternate water resource for crop cultivation. In addition, it can contribute to reduce the fertilizer and to obtain the higher crop yield of Chinese cabbage.

Species Alterations Caused by Nitrogen and Carbon Addition in Nutrient-deficient Municipal Waste Landfills

  • Kim, Kee-Dae
    • Journal of Ecology and Environment
    • /
    • 제30권2호
    • /
    • pp.161-170
    • /
    • 2007
  • The ultimate target of restoring waste landfills is revegetation. The most effective method for increasing species richness and biomass in nutrient limited waste landfills is the use of fertilizers. The aim of the present study was to investigate the effects of nitrogen fertilizer, and the addition of carbon through sawdust, sucrose and litter, on vegetation dynamics at a representative municipal waste landfill in South Korea: Kyongseodong. A total of 288 permanent plots $(0.25m^2)$ were established and treated with nitrogen fertilizer (5, 10 and $20Ng/m^2$), sawdust $(289g/m^2)$ sucrose $(222g/m^2)$ and litter $(222g/m^2)$. The aboveground biomass was significantly enhanced by nitrogen fertilizer at 5 and $10Ng/m^2$, compared with the control plots. The total cover of all plant species increased significantly on plots treated with 5 and $20Ng/m^2$, as well as on those treated with sawdust and sucrose, compared with the control plots. The higher species richness after nitrogen fertilization of 10 to $20Ng/m^2$, and the sawdust and sucrose treatment demonstrated that this was an appropriate restoration option for nutrient deficient waste landfills. This study demonstrated positive nutrient impacts on plant biomass and species richness, despite the fact that municipal waste landfills are ecosystems that are highly disturbed by anthropogenic and internal factors (landfill gas and leachate). Adequate N and C combined treatments will accelerate species succession (higher species richness and perennial increase) for restoration of waste landfills.

Effects of Earthworm Cast Addition on Food Waste Compost under Co-composting with Sawdust

  • Lee, Chang Hoon;Nam, Hong-Sik;Kim, Seok-Cheol;Park, Seong-Jin;Kim, Myeong-Sook;Kim, Sung-Chul;Oh, Taek-Keun
    • 한국토양비료학회지
    • /
    • 제50권6호
    • /
    • pp.588-597
    • /
    • 2017
  • Food waste has been recognized as a critical problem in Korea and many research was conducted to efficiently reutilize or treat food waste. Main purpose of this research was to evaluate a feasibility for producing fermented organic fertilizer with mixture of earthworm cast (EC). Four different treatments were mixed with food waste and EC at the rate of 0, 10, 20, and 30%, respectively. Total days of composting experiment were 84 days and each sub samples were collected at every 7 days from starting of composting. Results showed that inner temperature in composting was increased to $70{\pm}4^{\circ}C$ within 5~10 days depending on mixing ratio of EC. Among different treatment, the highest increase of inner temperature was observed in treatment mixed with food waste and EC 30%. After finishing composting experiment, maturity was evaluated with solvita and germination test. Maturity index (MI) of each treatment was ranged between 5~7 indicating that manufactured fertilizer was curing or finished stage. Calculated germination index (GI) was at the range of 104~116 depending on mixing ratio of EC. Both MI and GI showed that manufactured fertilizer was suitable for fertilizer criteria while control (FW only) was not adequate for composting. Overall, earthworm cast can be utilized for improving compost maturity by mixing with food waste and more research should be conducted to make high quality of food waste compost with earthworm cast in agricultural fields.

부산석회를 활용한 휴ㆍ폐 석탄광산 폐기물의 안정화 및 식생복원 (Reclamation of the Closed/Abandoned Coal Mine Overburden Using Lime wastes from Soda Ash Production)

  • 김휘중;양재의;옥용식;유경열;박병길;이재영;전상호
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2004년도 임시총회 및 추계학술발표회
    • /
    • pp.37-47
    • /
    • 2004
  • In Korea, over three hundreds of the coal mines were closed or abandoned due to the depression of the mining industry since the late 1980s. Many of them locate in the steep mountain valleys and the coal mine wastes had been disposed without a proper treatment From these mines, enormous amounts of coal mine overburdens have been abandoned in the slopes and the ample amounts of acid mine drainage (AMD) from either portal or overburdens have been discharging directly to the streams, causing the detrimental effects on soil and water qualities. Objectives of this research were to reclaim the coal mine overburdens using the lime waste cake from the soda ash production by stabilizing the overburden slopes, introducing the vegetation alleviate the environmental problems caused by the closed coal mines. The percentages of the grass distribution ratio (%) and the surface coverage ($\textrm{cm}^2$) in each treatment plot were determined during June to August after seed spraying grasses such as orchard grass (Dactylis glomerata L), Kentucky Bluegrass (Poa pratensis L.) and Eulalia (Miscanthus sinensis Anderss) at the end of May. The grasses covered only 15.5 % of the coal overburden plot at the early stage but the coverage was increased with time to 33% in August. Growth of such grasses was enhanced with the combined treatments of lime waste and topsoil resulting in the increased surface coverage by the grasses. The Increment of the surface coverage from June to August was higher with lime waste treatments. The distribution percentages and surface coverage were highest when the lime wastes were treated at 25 % of the lime requirement. This might be related with the high salt contents in the hire wastes. Results demonstrated that the amounts of lime wastes at 25% of the lime requirement were sufficient for neutralizing the acidic coal overburden and introducing the re-vegetation. Either layering between the coal waste and topsoil or mixing with coal overburdens could be adopted as the lime waste treatment method. The combined treatment of lime wastes and topsoil was recommended for re-vegetation in the coal overburden slopes. The lime wastes from the soda ash production might have a potential to be recycled for the reclamation of the abandoned coal mines to alleviate the environmental problems associated with coal mine waste.

  • PDF