• Title/Summary/Keyword: waste soda-lime glass

Search Result 6, Processing Time 0.016 seconds

Production of Foamed Glass by Using Hydrolysis of Waste Glass (I) - Hydrolysis of Waste Glass - (폐 유리의 가수 분해반응에 의한 발포유리의 제조(I) - 폐유리의 가수분해 반응 -)

  • Lee, Chul-Tae;Lee, Hong-Gil
    • Applied Chemistry for Engineering
    • /
    • v.16 no.4
    • /
    • pp.519-526
    • /
    • 2005
  • Hydrolysis of soda-lime waste glass was investigated to test the feasibility for use of waste glass as feed material in the production of foamed glass. The soda-lime glass, such as plate glass and various bottle glasses, was effectively hydrolyzed by steam and water under high pressure. The proper condition for the hydrolysis was found to be reaction temperature of $250^{\circ}C$ and reaction time of 2 h. Under this condition, the water content of hydrated glass through hydrolysis was 7.85~10.04%, allowing successful foaming process for production of foamed glass. Using Na as the modifying agent of glass was effective in the hydrolysis by water. The highest water content of hydrated glass was obtained when weight ratio of NaOH to the glass was 0.04.

Preparation of Foamed Glass Block from Recycled Soda-lime-silicate Glasses by Chemical Composition Control (폐 소다석회 유리의 조성조절에 의한 발포유리블록의 제조)

  • Kim, Jung-Min;Lee, Chul-Tae
    • Applied Chemistry for Engineering
    • /
    • v.24 no.4
    • /
    • pp.382-390
    • /
    • 2013
  • Foaming process of waste soda lime glasses by just chemical composition control of vitreous feed materials was investigated to find a novel and efficient recycling process. For the chemical composition control of feed materials, 10 wt. parts of $SiO_2$, 0.5 wt. parts of $Na_2SO_4$, 3.0 wt. parts of $B_2O_3$, and 0.3 wt. parts of carbon black as the foaming agent were mixed with 100 wt. parts of soda-lime vitreous feed powder. Proper conditions for foaming process in tunnel kiln are the foaming temperature of $830{\sim}850^{\circ}C$, the foaming time of 30~35 min, and the vitreous feed powder particle size of -325 mesh. Properties of foamed glass blocks obtained under these foaming conditions showed the density of $0.17{\sim}0.21g/cm^3$, thermal conductivity of $0.06{\pm}0.005kcal/h{\cdot}m{\cdot}^{\circ}C$, moisture absorption of 1.1~1.5%, and compressive strength of $20{\sim}30kgf/mm^2$.

Radiation parameterizations and optical characterizations for glass shielding composed of SLS waste glass and lead-free materials

  • Thair Hussein Khazaalah;Iskandar Shahrim Mustafa ;M.I. Sayyed
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4708-4714
    • /
    • 2022
  • The novelty in the present search, the Soda-Lime-Silica (SLS) glass waste to prepare free lead glass shielding was used in order to limit the accumulation of glass waste, which requires extensive time to decompose. This also saves on the consumption of pure SiO2, which is a finite resource. Furthermore, the combining of BaO with Bi2O3 into a glass network leads to increased optical properties and improved attenuation. The UV-Visible Spectrophotometer was used to investigate the optical properties and the radiation shielding properties were reported for current glass samples utilizing the PhysX/PDS online software. The optical property results indicate that when BaO content increases in glass structure, the Urbach energy ΔE, and refractive index n increases while the energy optical band gap Eopt decreases. The result of the metallisation criteria (M) revealed that the present glass samples are nonmetallic (insulators). Furthermore, the radiation shielding parameter findings suggest that when BaO was increased in the glass structure, the linear attenuation coefficient and effective atomic number (Zeff) rose. But the half-value layer HVL declined as the BaO concentration grew. According to the research, the glass samples are non-toxic, transparent to visible light, and efficient radiation shielding materials. The Ba5 sample is considered the best among all the samples due to its higher attenuation value and lower HVL and MFP values, which make it a suitable candidate as transparent glass shield shielding.

Strength & Microstructure of Class-C fly Ash Activated in Waste Glass Based Alkaline Solution

  • Sasui, Sasui;Kim, Gyu Yong;Pyeon, Su Jeong;Suh, Dong Kyun;Lee, Yae Chan;Nam, Jeong Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.136-137
    • /
    • 2021
  • The soda lime waste glass powder was dissolved in NaOH-4M solution to synthesize an alkaline activator, which was used to activate Class-C fly ash (FA). Compressive and flexural strength tests were conducted to determine the mechanical properties. Archimedes' principle was applied to measure the porosity of samples, (SEM-EDX) and XRD was used to study the microstructure and phase changes of samples. Through Inductive Coupled Plazma technique, the solution was found to increase the concentration of Si as the amount of dissolved glass powder was increased. Owing to the increased concentration of Si in an alkaline solution, the reactivity of FA was accelerated resulting in an increased strength and reduced porosity. Additionally, the dissolution of FA was improved as well as the formation of amorphous phases in the matrix was also enhances with the concentration of increased Si in an alkaline solution.

  • PDF

Production of Foamed Glass by Using Hydrolysis of Waste Glass (II) - Foaming Process of Hydrated Glass - (폐유리의 가수분해 반응에 의한 발포유리의 제조(II) - 가수분해된 유리의 발포 -)

  • Lee, Chul-Tae;Lee, Hong Gil;Um, Eui-Heum
    • Applied Chemistry for Engineering
    • /
    • v.16 no.6
    • /
    • pp.760-767
    • /
    • 2005
  • The goal of this study was to find an application method of the waste soda-lime glass as the feed material for foamed glass by foaming of hydrated waste glass. The proper conditions for the foaming of hydrated waste glass were found to be: temperature of $92.5^{\circ}C$; reaction time of 10~20 min; particle size of -325 mesh as the unhydrated glass starting materials; and graphite weight to the hydrated glass ratio of 0.003 as the foaming agent. The resulting formed glass made from hydrated mixed waste glass under above mentioned conditions had the characteristics of density less than $0.2g/cm^3$ and thermal conductivity of $0.05kcal/mh^{\circ}C$.

Waste Glass as an Activator in Class-C fly Ash/GGBS based Alkali Activated Material

  • Sasui, Sasui;Kim, Gyu Yong;Lee, Sang Kyu;Son, minjae;Hwang, Eui Chul;Nam, Jeong Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.11a
    • /
    • pp.77-78
    • /
    • 2020
  • An alkaline activator was synthesized by dissolving waste glass powder (WGP) in NaOH-4M solution to explore its effects on the Class-C fly ash (FA) and ground granulated blast furnace slag (GGBS) based alkali-activated material (AAM). The compressive strength and porosity were measured, and (SEM-EDX) were used to study the hydration mechanism and microstructure. Results indicated that the composition of alkali solutions was significant in enhancing the properties of the obtained AAM. As the amount of dissolved WGP increased in alkaline solution, the silicon concentration increased, causing the accelerated reactivity of FA/GGBS to develop Ca-based hydrate gel as the main reaction product in the system, thereby increasing the strength. Further increase in WGP dissolution led to strength loss, which were believed to be due to the excessive water demand of FA/GGBS composites to achieve optimum mixing consistency. Increasing the GGBS proportion in a composite also appeared to improve the strength which contributed to develop C-S-H-type hydration.

  • PDF