• 제목/요약/키워드: waste sludge

검색결과 776건 처리시간 0.027초

Corrosion Protection of Automotive Steels by Novel Water-borne Primer Systems

  • Ooij, William J. van;Puomi, Paula
    • Corrosion Science and Technology
    • /
    • 제6권5호
    • /
    • pp.239-244
    • /
    • 2007
  • Corrosion protection of automotive steels has traditionally been assured by using a zinc phosphate metal pretreatment followed by the deposition of a cathodic electrocoat system. This system has been developed and optimized over the years into a highly robust and dependable system with a high performance. However, in terms of efficiency and use of resources and energy, the need is now felt to develop a simpler system with fewer steps, shorter lines, less energy requirements (curing and e-coat deposition) and less stringent waste disposal requirement (phosphate sludge). We report here on the development of a one-step system that can possibly replace both the zinc phosphate and the e-coating processes. Such a system is based on the so-called superprimer concept that we have recently developed for the replacement of chromate pretreatment and chromate-containing primers in the aerospace industry. With some modifications, such systems can also be adapted for use in the automotive industry.

카드뮴 내성 Hansenula anomala 균주의 특성 (Characterzation of a Cadmium-ion Tolerant Strain of Hansenula anomala)

  • 유대식;송형익;정기택
    • 미생물학회지
    • /
    • 제24권1호
    • /
    • pp.57-61
    • /
    • 1986
  • 폐수중에 함유된 카드뮴을 미생물학적인 방법으로 정화하기 위한 기초 연구로서 아연 광산에서 고도 카드뮴 내성 효모 B-7을 분리하여 동정한 바 Hansenula anomala B-7 또는 그 유연끌으로 밝혀졌다. 이 효모는 농도 구배 한천 명판법에 의하여 $2,700{\mu}g/ml$의 카드뮴 농도에서도 내성을 나타내므로 고도 내성균으로 분류되었고 $1,000{\mu}g/ml$의 고농도 카드뮴 함유 액체 배지에서도 생육이 가능함을 확인하였다.

  • PDF

제지공장용 열병합발전시스템의 운용비용절감을 위한 합리적 운전계획수립에 관한 연구 (A Rational Operation Scheduling for Operating Cost Saving in Cogeneration System for Paper Mill)

  • 최광범;이종범
    • 에너지공학
    • /
    • 제8권4호
    • /
    • pp.512-518
    • /
    • 1999
  • 본 논문은 각종 보조운전설비가 연계된 제지공장용 열병합발전시스템의 합리적인 운전계획을 수립하는 기법을 제시하였다. 보조운전설비로서는 보조보일러, 폐열보일러 및 슬러지 소각로가 있으며, 이 설비들이 다기 열병합발전시스템과 연계하여 운전되고 있다. 최적운전계획은 특히 환경을 고려하기 위해 목적함수에 환경요소를 추가하여 수립하였다. 전력은 구매할수있도록 전력회사와 연계되어 운전된다. 본 논문에서 제시한 최적운전계획기법은 제지공장의 에너지이용률을 향상시키는데 기여할 것으로 사료된다.

  • PDF

슬러지와 플라스틱 폐기물을 혼합한 복합고형연료 개발 (Development of Composite RPF by mixing the sludge with plastic waste)

  • 이장근;김민선;노승민
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.206.2-206.2
    • /
    • 2010
  • 현재 RPF 생산공정에서 생산된 RPF는 약 7,500~8,500kcal/kg 의 높은 열량을 지니고 있다. 이러한 특성으로 연소시 소각로 내부의 온도가 부분적으로 급격히 상승하여 적정온도조절이 어렵고, 로내 장치들의 내구성이 저하되는 등 문제가 발생하고 있다. 또한, RPF에 포함된 비교적 높은 농도의 염소 함량(0.8~1.8% wt)으로 인해 다량의 대기오염물질이 발생되는 단점이 나타나고 있다. 따라서, 이러한 문제점들을 개선하기 위해 RPF의 개질이 필요하며 본 연구에서는 슬러지와 RPF를 혼합하여 열량, 성형성, 염소함량등을 고려하여 최적의 혼합비율을 선정하였다. J하수처리장에서 발생하는 하수슬러지를 이용하여 5, 15, 25, 30, 35%를 RPF 성형공정에 혼합하여 실험하였다. 5% 혼합시 발열량은 약 6,300~6,800kcal/kg, 염소농도는 0.8~1.6%(wt), 15% 혼합시 발열량은 5,500~6,000kcal/kg, 염소농도는 0.7~1.4%(wt), 25% 혼합시 발열량은 5,200~5,900kcal/kg, 염소농도는 0.6~1.1%(wt), 30% 혼합시 발열량은 5,000~5,700kcal/kg, 염소농도는 0.6~1.0%(wt), 35% 혼합시 발열량은 4,800~5,200kcal/kg, 염소농도는 0.4~0.6%(wt)으로 나타났다. 각 혼합비율에서 관찰된 성형성은 5~25% 혼합까지는 성형된 RPF와 유사하게 일정한 크기 및 강도를 유지 할 수 있었으나, 25% 이상 혼합시 분말형태의 가루가 많이 발생되며 강도가 약해져 쉽게 부스러지는 문제점등이 나타났다. 연료의 개질 형태나 성형성등을 고려하였을 때 슬러지 혼합비율이 약 15~25% 정도가 최적 혼합비율인 것으로 나타났다.

  • PDF

활성슬러지 공정에서의 조업지원용 전문가 시스템에 관한 연구 (A Study on the Operation Aid Expert System for Activated Sludge Process)

  • 조욱상;이진우;박상진;원종식;김상욱
    • 공업화학
    • /
    • 제7권2호
    • /
    • pp.371-378
    • /
    • 1996
  • 경기도 광주군 소재 경안천 하 폐수 종말처리장을 실제 적용 대상으로하여 공정 조업상에 발생될 수 있는 문제점의 원인을 진단 및 분석하고 이에 적절한 대응 방안을 제시할 수 있는 조업지원 목적의 prototype의 전문가 시스템을 연구, 개발하여 실제 적용 test를 수행하였다. 특히 생물학적 폐수처리 공정인 폭기조와 최종 침전지상에서 발생될 수 있는 공정상의 문제점을 집중분석 (bulking 현상 등) 하여 100 여개의 production-rules로 구성된 지식베이스를 완성하므로써 공정의 안정적인 조업관리 및 유지가 가능하도록 하였고 조업에 있어서 전문 및 표준기술을 제공하므로써 특히 경험이 부족한 신입 현장 조업자들의 조업능률을 향상시킬 수 있었다. 향후의 과제는 조업 data를 통계처리하여 공정조업에 영향을 미치는 인자와 조업 제어변수간에 상관관계를 분석하고 최적의 조업조건을 제시할 수 있는 통계제어모델을 개발하여 전문가 시스템에 접목시킴으로써 Prototype이 아닌 완벽한 공정시스템 도구로 발전시키고자 한다.

  • PDF

KIER의 열분해유화 공정 기술과 실증플랜트 소개 (Introduction of KIER Pyrolysis Process and 3,000 ton/yr Demonstration Plant)

  • 신대현;전상구;김광호;이경환;노남선;이기봉
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 춘계학술대회 논문집
    • /
    • pp.479-482
    • /
    • 2008
  • Since late of 2000, KIER has developed a novel pyrolysis process for production of fuel oils from polymer wastes. It could have been possible due to large-scale funding of the Resource Recycling R&D Center. The target was to develop an uncatalyzed, continuous and automatic process producing oils that can be used as a fuel for small-scale industrial boilers. The process development has proceeded in three stages bench-scale unit, pilot plant and demonstration plant. As a result, the demonstration plant having capacity of 3,000 tons/year has been constructed and is currently under test operation for optimization of operation conditions. The process consisted of four parts ; feeding system, cracking reactor, refining system and others. Raw materials were pretreated via shredding and classifying to remove minerals, water, etc. There were 3 kind of products, oils(80%), gas(15%), carbonic residue(5%). The main products i.e. oils were gasoline and diesel. The calorific value of gas has been found to be about 18,000kcal/$m^3$ which is similar to petroleum gas and shows that it could be used as a process fuel. Key technologies adopted in the process are 1) Recirculation of feed for rapid melting and enhancement of fluidity for automatic control of system, 2) Tubular reactor specially-designed for heavy heat flux and prevention of coking, 3)Recirculation of heavy fraction for prevention of wax formation, and 4) continuous removal & re-reaction of sludge for high yield of main product (oil) and minimization of residue. The advantages of the process are full automation, continuous operation, no requirement of catalyst, minimization of coking and sludge problems, maximizing the product(fuel oil) yield and purity, low initial investment and operation costs and environment- friendly process. In this presentation, background of pyrolysis technology development, the details of KIER pyrolysis process flow, key technologies and the performances of the process will be discussed in detail.

  • PDF

THE REMOVAL OF HEAVY METALS USING HYDROXYAPATITE

  • Lee, Chan-Ki;Kim, Hae-Suk;Kwon, Jae-Hyuk
    • Environmental Engineering Research
    • /
    • 제10권5호
    • /
    • pp.205-212
    • /
    • 2005
  • The study was conducted to investigate the removal of heavy metals by using Hydroxyapatite(HAp) made from waste oyster shells and wastewater with high concentration of phosphorus. The maximum calcium concentration for the production of HAp in this study was released up to 361 mg/L at pH of 3 by elution experiments. When the pH was at adjusted 6, the maximum calcium released concentration was 41 mg/L. During the elution experiment, most of the calcium was released within 60 minutes. This reaction occurred at both pH levels of 3 and 6. The result of the XRD analysis for the HAp product used in this study shows the main constituent was HAp, as well as OCP. The pH was 8.6. As the temperature increased, the main constituent did not vary, however its structure was crystallized. When the pH was maintained at 3, the removal efficiency decreased as the heavy metal concentration increased. The order of removal efficiency was as follows: $Fe^{2+}$(92%), $Pb^{2+}$(92%) > $Cu^{2+}$(20%) > $Cd^{2+}$(0%). Most of these products were dissolved and did not produce sludge in the course of heavy metals removal. As the heavy metal concentration increased at pH of 6, the removal efficiency increased. The removal efficiencies in all heavy metals were over 80%. From the analysis of the sludge after reaction with heavy metals, the HAp was detected and the OCP peak was not observed. Moreover, lead ion was observed at the peaks of lead-Apatite and lead oxidant. In the case of cadmium, copper and iron ions, hydroxide forms of each ion were also detected.

연속회분식 반응 공정에서 동역학적 계수 및 미생물합성에 사용된 영양물질 산정 (Estimation of Kinetic Coefficient and Assimilated Nutrients Mass in SBR Process)

  • 지대현;신상우;이광호;이재근
    • 한국물환경학회지
    • /
    • 제23권5호
    • /
    • pp.607-612
    • /
    • 2007
  • In this study, we investigated the variations of the kinetic coefficients and Chemical Oxygen Demand (COD), N and P mass used for assimilation of a sequencing batch reactor (SBR) system with the variation of SRTs; SRTs of 7.5, 10.0, 12.5, 15.0 and 20.0 days were tested in one cycle of SBR operation to determine the optimum conditions for the operation of the SBR and estimate its COD, nitrogen and phosphorus removal efficiencies. The SBR system was operated under the conditions as follows: an operation time of 6 hours per cycle, a hydraulic retention time (HRT) of 12 hours, an influent COD loading of $0.4kg/m^3/day$, and an influent nitrogen loading of $0.068kgT-N/m^3/day$. The yield coefficient (Y) and decay rate coefficient ($k_d$) were estimated to be 0.4198 kgMLVSS/kgCOD and $0.0107day^{-1}$ by calculating the removal rate of substrate according to the variation of SRT. Considering total nitrogen amount removed by sludge waste process, eliminated by denitrification, and in clarified water effluent with reference to 150 mg/cycle of influent nitrogen amount, the percentage of nitrogen mass balance from the ratio of the nitrogen amount in effluent (N output) to that in influent (N input) for Runs 1~5 were 95.5, 97.0, 95.5, 99.5, and 95.5%, respectively, which is well accounted for, with mass balances close to 100%.

황입자를 이용한 T. denitrificans에 의한 질소제거 최적화 연구 (A Study on characteristics analysis of autotrophic denitrification microbial community using sulfur granule)

  • 유수철;주재영;남덕현;박철휘
    • 상하수도학회지
    • /
    • 제22권2호
    • /
    • pp.259-265
    • /
    • 2008
  • Generally speaking, there are two widely used methods of Nitrogen removal from waste water: 1) nitrification using autotrophic microorganisms, and 2) denitrification using heterotrophic microorganisms. The C/N ratio is an important factor of the denitrification process. In this case, if methanol is added to increase the lacking organic matter, a high economic cost is incurred and methanol is left in the processed water. In an effort to fix these issues, autotrophic denitrification through the use of Hydrogen, Iron and Sulfur is being studied, and among those Sulfur is cheaper and carries out denitrification effectively, and therefore is being studied the most. In this study, after cultivating T. denitrificans, the presence of T. denitrificans was determined and the effectiveness of denitirification via T. denitrificans was studied. In order to find out about the inhibition of T. denitrificans from the loading of organic matter, this shows that the greater the loading of organic matter, the more the denitrification ability of T. denitrificans is hindered. In order to research the hindrance of T. denitrificans resulting from the loading of $NO_3{^-}-N$, these results show that concentrations less than 100mg/L per 100mL of gel volume do not hinder T. denitrificans. In order to research the optimization of denitrification resulting from T. denitrificans, three 500mL samples of Sulfur granules were prepared: 1) one with only T. denitrificans attached (Mode I), 2) one with both T. denitrificans and active sludge attached (Mode II), and 3) one with only active sludge attached (Mode III). The results showed that autotrophic denitrification using S from Mode I was the most active.

Maximizing biogas production by pretreatment and by optimizing the mixture ratio of co-digestion with organic wastes

  • Lee, Beom;Park, Jun-Gyu;Shin, Won-Beom;Kim, Beom-Soo;Byun, Byoung-su;Jun, Hang-Bae
    • Environmental Engineering Research
    • /
    • 제24권4호
    • /
    • pp.662-669
    • /
    • 2019
  • Anaerobic digestion is a popular sewage sludge (Ss) treatment method as it provides significant pollution control and energy recovery. However, the low C/N ratio and poor biodegradability of Ss necessitate pretreatment methods that improve solubilization under anaerobic conditions in addition to anaerobic co-digestion with other substrates to improve the process efficiency. In this study, three pretreatment methods, namely microwave irradiation, ultrasonication, and heat treatment, were investigated, and the corresponding improvement in methane production was assessed. Additionally, the simplex centroid design method was utilized to determine the optimum mixture ratio of food waste (Fw), livestock manure (Lm), and Ss for maximum methane yield. Microwave irradiation at 700 W for 6 min yielded the highest biodegradability (62.0%), solubilization efficiency (59.7%), and methane production (329 mL/g VS). The optimum mixture ratio following pretreatment was 61.3% pretreated Ss, 28.6% Fw, and 10.1% Lm. The optimum mixture ratio without pretreatment was 33.6% un-pretreated Ss, 46.0% Fw, and 20.4% Lm. These results indicate that the choice of pretreatment method plays an important role in efficient anaerobic digestion and can be applied in operational plants to enhance methane production. Co-digestion of Ss with Fw and Lm was also beneficial.