• Title/Summary/Keyword: waste seashells

Search Result 5, Processing Time 0.026 seconds

The Utilization of Waste Seashells for $H_{2}S$ Removal

  • Kim, Young-Sik;Suh, Jeong-Min;Jang, Sung-Ho
    • Journal of Environmental Health Sciences
    • /
    • v.31 no.6
    • /
    • pp.483-488
    • /
    • 2005
  • The waste seashells were used for the removal of hydrogen sulfide from a hot gas stream. The sulphidation of waste seashells with $H_{2}$S was studied in a thermogravimetric analyzer at temperature between 600 and $800^{circ}C$. The desulfurization performance of the waste seashell sorbents was experimentally tested in a fixed bed reactor system. Sulfidation experiments performed under reaction conditions similar to those at the exit of a coal gasifier showed that preparation procedure and technique, the type and the amount of seashell, and the size of the seashell affect the $H_{2}$S removal capacity of the sorbents. The pore structure of fresh and sulfided seashell sorbents was analyzed using mercury porosimetry, nitrogen adsorption, and scanning electron microscopy (SEM). Measurements of the reaction of $H_{2}$S with waste seashells show that particles smaller than 0.631 mm can achieve high conversion to CaS. According to TGA and fixed bed reactor results, temperature had influenced on $H_{2}$S removal efficiency. As desulfurization temperature increased, desulfurization efficiency increased. Also, maximum desulfurization efficiency was observed at $800^{circ}C$. Desulfurization was related to calcinations temperature.

The utilization of waste seashell for high temperature desulfurization

  • Kim, Young-Sik;Kim, Taek-Geun;Sim, Eon-Bong;Seo, Jeong-Min
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2005.12a
    • /
    • pp.66-71
    • /
    • 2005
  • The waste seashells were used for the removal of hydrogen sulfide from a hot gas stream. The sulphidation of waste seashells with $H_2S$ was studied in a thermogravimetric analyzer at temperature between 600 and 800$^{\circ}C$. The desulfurization performance of the waste seashell sorbents was experimentally tested in a fixed bed reactor system. Sulfidation experiments performed under reaction conditions similar to those at the exit of a coal gasifier showed that preparation procedure and technique, the type and the amount of seashell, and the size of the seashell affect the $H_2S$ removal capacity of the sorbents. The pore structure of fresh and sulfided seashell sorbents was analyzed using mercury porosimetry, nitrogen adsorption, and scanning electron microscopy.

  • PDF

Reaction of $H_2S$ with Sorbents of Waste Seashell

  • Kim, Young-Sik;Kim, Taek-Gyun;Lee, Yong-Du;Shim, Eon-Bong;Jung, Jong-Hyeon
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2005.06a
    • /
    • pp.378-380
    • /
    • 2005
  • The waste seashells were used for the removal of hydrogen sulfide from a hot gas stream, The sulphidation of waste seashells with H$_2$S was studied in a thermogravimetric analyzer at temperature between 600 and 800${\circ}$C . The desulfurization performance of the waste seashell sorbents was experimentally tested in a fixed bed reactor system. Sulfidation experiments performed under reaction conditions similar to those at the exit of a coal gasifier showed that preparation procedure and technique, the type and the amount of seashell, and the size of the seashell affect the H2S removal capacity of the sorbents. The pore structure of fresh and sulfided seashell sorbents was analyzed using mercury porosimetry, nitrogen adsorption, and scanning electron microscopy.

  • PDF

Investigation of Waste Shell Fine Aggregates on the Material Characteristics of Cement Mortars (패각 잔골재가 시멘트 모르타르 재료 특성에 미치는 영향 분석)

  • Oh, Seo-Eun;Choi, Seung-Ha;Kim, Kyuwon;Han, Soo-Ho;Chung, Sang-Yeop
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.1
    • /
    • pp.33-39
    • /
    • 2024
  • This study explores the utilization of common marine wastes, specifically seashells, such as oysters and cockles, as alternative fine aggregates in construction materials. The considered seashells were cleaned and pre-processed for use as a substitute for aggregate in mortar. Cement mortar specimens were prepared under different conditions, such as substitution ratios and the cleaning status of the seashells. The compressive strength of the mortars specimens was evaluated, and the solid and porous structures of each specimen were analyzed using microstructure analysis methods such as XRD, SEM, and micro-CT. The results confirmed that oyster and cockle seashells are composed of different calcium carbonate polymorphs, and their microstructural characteristics influence the mechanical properties of the cement mortar specimens.

The Utilization of Waste Seashell for High Temperature Desulfurization

  • Kim, Young-Sik;Hong, Sung-Chul
    • Journal of Environmental Health Sciences
    • /
    • v.36 no.2
    • /
    • pp.136-140
    • /
    • 2010
  • The integrated gasification combined cycle (IGCC) is one of the most promising proposed processes for advanced electric power generation that is likely to replace conventional coal combustion. This emerging technology will not only improve considerably the thermal efficiency but also reduce or eliminate the environmentally adverse effects normally associated with coal combustion. The IGCC process gasifies coal under reducing conditions with essentially all the sulfur existing in the form of hydrogen sulfide ($H_2S$) in the product fuel gas. The need to remove $H_2S$ from coal derived fuel gases is a significant concern which stems from stringent government regulations and also, from a technical point of view and a need to protect turbines from corrosion. The waste seashells were used for the removal of hydrogen sulfide from a hot gas stream. The sulphidation of waste seashells with $H_2S$ was studied in a thermogravimetric analyzer at temperature between $600^{\circ}C$ and $800^{\circ}C$. The desulfurization performance of the waste seashell sorbents was experimentally tested in a fixed bed reactor system. Sulfidation experiments performed under reaction conditions similar to those at the exit of a coal gasifier showed that preparation procedure and technique, the type and the amount of seashell, and the size of the seashell affects the $H_2S$ removal capacity of the sorbents. The pore structure of fresh and sulfided seashell sorbents was analyzed using mercury porosimetry, nitrogen adsorption, and scanning electronmicroscopy.