• Title/Summary/Keyword: waste rocks

Search Result 91, Processing Time 0.027 seconds

Evaluation of Low or High Permeability of Fractured Rock using Well Head Losses from Step-Drawdown Tests (단계양수시험으로부터 우물수두손실 항을 이용한 단열의 고.저 투수성 평가)

  • Kim, Byung-Woo;Kim, Hyoung-Soo;Kim, Geon-Young;Koh, Yong-Kwon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.1
    • /
    • pp.1-11
    • /
    • 2012
  • The equation of the step-drawdown test "$s_w=BQ+CQ^p$" written by Rorabaugh (1953) is suitable for drawdown increased non-linearly in the fractured rocks. It was found that value of root mean square error (RMSE) between observed and calculated drawdowns was very low. The calculated $C$ (well head loss coefficient) and $P$ (well head loss exponent) value of well head losses ($CQ^p$) ranged $3.689{\times}10^{-19}{\sim}5.825{\times}10^{-7}$ and 3.459~8.290, respectively. It appeared that the deeper depth in pumping well the larger drawdowns due to pumping rate increase. The well head loss in the fractured rocks, unlike that in porous media, is affected by properties of fractures (fractures of aperture, spacing, and connection) around pumping well. The $C$ and $P$ value in the well head loss is very important to interpret turbulence interval and properties of high or low permeability of fractured rock. As a result, regression analysis of $C$ and $P$ value in the well head losses identified the relationship of turbulence interval and hydraulic properties. The relationship between $C$ and $P$ value turned out very useful to interpret hydraulic properties of the fractured rocks.

Borehole Disposal Concept: A Proposed Option for Disposal of Spent Sealed Radioactive Sources in Tanzania (보어홀 처분 개념: 탄자니아의 폐밀봉선원 처분을 위한 제안)

  • Salehe, Mikidadi;Kim, Chang-Lak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.11 no.4
    • /
    • pp.293-301
    • /
    • 2013
  • Borehole Disposal Concept (BDC) was initiated by the South African Nuclear Energy Corporation (NECSA) with the view to improve the radioactive waste management practices in Africa. At a time when geological disposal of radioactive waste is being considered, the need to protect ground water from possible radioactive contamination and the investigation of radionuclides migration through soil and rocks of zone of aeration into ground water has becomes very imperative. This is why the Borehole Disposal Concept (BDC) is being suggested to address the problem. The concept involves the conditioning and emplacement of disused sealed radioactive sources in an engineered facility of a relatively narrow diameter borehole (260 mm). Tanzania is operating a Radioactive Waste Management Facility where a number of spent sealed radioactive sources with long and short half lives are stored. The activity of spent sealed radioactive sources range from (1E-6 to 8.8E+3 Ci). However, the long term disposal solution is still a problem. This study therefore proposing the country to adopt the BDC, since the repository requires limited land area and has a low probability of human intrusion due to the small footprint of the borehole.

Environmental Pollution and Reclamation in the Abandoned Mines in Korea (국내 폐 광산 환경오염 실태 및 처리 현황)

  • Cheong Young-Wook;Min Jeong-Sik
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2001.09a
    • /
    • pp.75-89
    • /
    • 2001
  • There are 334 coal mines and about 900 metal mines abandoned. The environmental problems such as acid mine drainage from adits etc. and the subsidence has occurred in the abandoned mines. In addition, soil has been contaminated by tailings. According to analysis of mine drainages, some of them from adits in the abandoned coal and metallic mines were acidic and polluted by heavy metals. Especially, water quality of coal mine drainages were different by areas. Treatment of mine drainage by conventional chemical treatment has the drawback because the operating cost is very expensive. The treatment system used in mine drainage is the natural treatment system such as anoxic limestone drain in adits and the constructed wetland. The method of reclamation for abandoned waste rocks and tailings impoundments are mainly landfilling.

  • PDF

Preliminary Study on the Jinju Formation in the Gyeongsang Basin to Evaluate Host Rock for High-level Radioactive Waste Geological Disposal: Focusing on Lithological and Mineralogical Characteristics (고준위방사성폐기물 지층처분 암종 평가를 위한 경상분지 진주층 예비연구: 암상 및 광물학적 특성을 중심으로)

  • Sung Kyung Hong;Kwangmin Jin
    • Economic and Environmental Geology
    • /
    • v.57 no.4
    • /
    • pp.387-396
    • /
    • 2024
  • The geological disposal of high-level radioactive waste (HLW) involves permanently isolating the wastes in stable geological formations deep underground. Mudstone (siltstone and claystone) containing abundant clay minerals is proposed as a host rock for geological disposal of HLW because clay minerals have low permeability and high ion sorption/exchange capacity. Despite the widespread occurrence of sedimentary basins in Korea, there is a lack of evaluation of mudstone as host rocks for geological disposal. In this study, we utilized the JBH-1 borehole (7-754 m) obtained from the Jinju Formation to investigate the distribution trend and mineral compositions of mudstone. Additionally, we conducted comparative analyses with the Opalinus Clay in Switzerland considered as host rock of geological disposal of HLW. Claystone containing more than 40% clay minerals exhibit thick layers primarily in the upper section (7-350 m) of the JBH-1 borehole. While the clay minerals content of claystone does not show significant variation with depth, there are differences in the characteristics of feldspar and carbonate minerals. These mineralogical variations can led change in pore water chemistry and rock mechanical properties. The clay minerals content of claystone in the Jinju Formation is similar to that of the Opalinus Clay. However, there are notable differences in clay minerals composition. While the Opalinus Clay contains smectite-illite mixed-layer minerals, the Jinju Formation are dominated by illite indicating higher burial temperatures. This information will be useful for studying the host rock of HLW geological disposal site in Korea.

Failure and Deformation Characteristics of Rock at High and Low Temperatures (고온 및 저온하에서의 암석의 변형, 파괴 특성)

  • 정재훈;김영근;이형원;이희근
    • Tunnel and Underground Space
    • /
    • v.2 no.2
    • /
    • pp.224-236
    • /
    • 1992
  • It is very important to determine the thermo-mechanical characteristics of the rock mass surrounding the repository of radioctive waste and the LPG storage cavern. In this study, Hwasoon-Shist. Dado-Tuff adn Chunan-Tonalite were the selected rock types. Temperature dependence of the mechanical properteis such as uniaxial compressive strength, tensile strength, Young's modulus was investigated by measuring the behaviour of these properties due to the variation of temperature. Also, the characteristics of strength and deformation of these rocks were examined through high-temperature triaxial compression tests with varing temperatures and confining pressures. Important results obtained are as follows: In high temperature tests, the uniaxial compressive strength and Yong's modulus of Tonalite showed a sligth increase at a temperature up to 300$^{\circ}C$ and a sharp decrease beyond 300$^{\circ}C$, and the tensile strength showed a linear decrease with increasing heating-temperature. In high-temperature triaxial compression test, both the failure stress and Young's modulus of Tonalite increased with the increase of confining pressure at constant heating-temperature, and the failure stress decreased at 100$^{\circ}C$ but increased at 200$^{\circ}C$ under a constant confining pressure. In low temperature tests, the uniaxial compressive and tensile strengths and Young's modulus of these rocks increased as the cooling-temperature is reduced. Also, the uniaxial compressive and tensile strengths of wet rock specimens are less than those of dry rock specimens.

  • PDF

Thermal Conductivity of Granite from the KAERI Underground Research Tunnel Site (지하처분연구시설 부지 화강암의 열전도도)

  • Cho, Won-Jin;Kwon, Sang-Ki;Choi, Jong-Won
    • Tunnel and Underground Space
    • /
    • v.18 no.3
    • /
    • pp.219-225
    • /
    • 2008
  • To obtain the input data for the design and long-tenn performance assessment of a high-level waste repository, the thermal conductivities of several granite rocks which were taken from the rock cores from the declined borehole were measured. The rock specimens were sampled at the various depths from the surface, and the thermal conductivity was measured under the dry and water-saturated conditions. Under the dry condition, the thermal conductivities of the granite rocks decrease with increasing porosity and range from 2.1 W/mK to 3.1 W/mK. The water-saturated rock samples showed greater thermal conductivities than the dry samples, and the thermal conductivities of the granite rocks range from 2.9 W/mK 3.6 W/mK. The anisotropy effects on the thermal conductivity of granite of the site seem to be insignificant.

Analysis of the Basement Structure of Noeun Waste Landfill Site Using a Refracted Elastic Wave Tomography Survey (탄성파 굴절법 토모그래피 방법을 이용한 노은 폐기물 매립장의 지반 구조 분석)

  • Kim, Jun-Kyoung
    • Journal of the Korean earth science society
    • /
    • v.27 no.4
    • /
    • pp.425-432
    • /
    • 2006
  • A seismic tomography using refraction waves is applied to provide information on depth of basement rocks and leachate distribution of the Noeun waste landfill site for the stage of preliminary environmental survey. This method is generally applied to civil and environmental areas. Three lines, apparently perpendicular to the potential leachate flow direction in this site, were installed to investigate the waste landfill site in pseudo three dimensional geometry. The results show that the site is composed of 3 layers and depth of basement becomes shallower at the upstream area of the landfill site than that of the downstream area. Moreover, some parts of the second layer and the basement at the down stream area are partially infiltrated by the leachate, probably related to the disturbed distribution of the different velocity materials within the second layer. In Conclusion, refraction wave tomography is found to be one of the most efficient way to investigate waste landfill site.

Roles and Importance of Microbes in the Radioactive Waste Disposal (방사성폐기물 처분에서 미생물의 역할과 중요성)

  • Baik, Min-Hoon;Lee, Seung-Yeop;Roh, Yeol
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.7 no.1
    • /
    • pp.63-72
    • /
    • 2009
  • Recently the importance and interest for the microbes has been increased because several important results for the effects of microbes on the radioactive waste disposal have been published continuously. In this study, research status and major results on the various roles and effects of microbes in the radioactive waste disposal have been investigated. We investigated and summarized the roles and major results of microbes in a multi-barrier system consisting of an engineered barrier and a natural barrier which is considered in radioactive waste disposal systems. For the engineered barrier, we discussed about the effects of microbes on the corrosion of a waste container and investigated the survival possibility and roles of microbes in a compacted bentonite buffer. For the natural barrier, the roles of microbes present in groundwaters and rocks were discussed and summarized with major results from natural analogue studies. Furthermore, we investigated and summarized the roles and various interactions processes of microbes and their effects on the radionuclide migration and retardation including recent research status. Therefore, it is expected that the effects and roles of microbes on the radioactive waste disposal can be rigorously evaluated if further researches are carried out for a long-term behavior of the disposal system in the deep geological environments and for the effects of microbes on the radionuclide migration through geological media.

  • PDF

Rock Mechanics Site Characterization for HLW Disposal Facilities (고준위방사성폐기물 처분시설 부지에 대한 암반역학 부지특성화)

  • Um, Jeong-Gi;Hyun, Seung Gyu
    • Economic and Environmental Geology
    • /
    • v.55 no.1
    • /
    • pp.1-17
    • /
    • 2022
  • The mechanical and thermal properties of the rock masses can affect the performance associated with both the isolating and retarding capacities of radioactive materials within the deep geological disposal system for High-Level Radioactive Waste (HLW). In this study, the essential parameters for the site descriptive model (SDM) related to the rock mechanics and thermal properties of the HLW disposal facilities site were reviewed, and the technical background was explored through the cases of the preceding site descriptive models developed by SKB (Swedish Nuclear and Fuel Management Company), Sweden and Posiva, Finland. SKB and Posiva studied parameters essential for the investigation and evaluation of mechanical and thermal properties, and derived a rock mechanics site descriptive model for safety evaluation and construction of the HLW disposal facilities. The rock mechanics SDM includes the results obtained from investigation and evaluation of the strength and deformability of intact rocks, fractures, and fractured rock masses, as well as the geometry of large-scaled deformation zones, the small-scaled fracture network system, thermal properties of rocks, and the in situ stress distribution of the disposal site. In addition, the site descriptive model should provide the sensitivity analysis results for the input parameters, and present the results obtained from evaluation of uncertainty.

Earth and Environmental Sciences with Synchrotron Radiation (방사광의 원리와 지구환경과학에의 응용)

  • 김영호
    • The Journal of the Petrological Society of Korea
    • /
    • v.10 no.3
    • /
    • pp.212-221
    • /
    • 2001
  • This paper introduces the characteristics and generation of the synchrotron radiation (SR). SR has the very high spectral brilliance, broad spectral range, X-ray wavelength tunability, high degree of polarization and collimation, and pulsed time structure. Also describes the technologies to apply in the fields of geology and environmental sciences. These include X-ray tomography, XRF, EXAFS, XANES, DAC, IVP experiments. Further, nuclear power generation and nuclear waste disposal methods are mentioned relating to energy. Using these, analyses of the chemistry, crystal structure and chemical combining states of minerals and rocks can be carried out. Applications in the fields of the economic geology, paleontology and environmental sciences are open too. Informations of the Earth interior materials' behavior under high pressure-temperature can be acquired.

  • PDF