• Title/Summary/Keyword: waste lime core

Search Result 3, Processing Time 0.019 seconds

Phosphorous Removal from Synthetic Wastewater Using a Continuous Flow Column Packed with Waste Lime Core (부산석회 Core로 충진된 연속식 칼럼을 이용한 인공폐수 내 인제거)

  • Lee Eui-Sang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.4
    • /
    • pp.709-714
    • /
    • 2006
  • The propose of this study was to investigate the feasibility of using waste lime core to remove phosphorus from wastewater in continuous flow reaction. The phosphorus was found to be removed from municipal wastewater by hydroxyapatite crystallization and precipation. Waste lime core size 1, 2 showed phosphorus removal rate of about 90% during early 11 hrs of run time. In addition, breakpoint time was decreased by increased inflow rate regardless of waste lime core size.

  • PDF

Evaluation of Discharge Capacity with PVDs Types in Waste Lime Area (폐석회지반에서의 연직배수재의 종류에 따른 통수능 평가)

  • Shin, Eun-Chul;Kim, Gi-Han
    • Journal of the Korean Geosynthetics Society
    • /
    • v.7 no.1
    • /
    • pp.39-44
    • /
    • 2008
  • Recently, the demand for industrial and residential lands are being increased with economic growth, however, it is difficult to acquire the land for development with good ground condition. For efficient and balanced development of land, new development projects are being carried out not only the areas with inland but those with the soft ground as well. As soft grounds have complex engineering properties and high variations such as ground settlement especially when their strength is low and depth is deep, it needs to accurately analyze the engineering properties of soft grounds and find general measurement for stabilization and economic design and management. Prefabricated vertical drain technology is widely used to accelerate the consolidation of soft clay deposits and dredged soil under the preloading and various types of vertical drain are being used with the discharge capacity. Under field conditions, the discharge capacity is changed with various reason, such as soil condition, confinement pressure, long-term clogging and folding of vertical drains, and so on. Therefore, many researcher and engineer recommend the use of required discharge capacity. In this paper, the experimental study were carried out for two different types of vertical drains by utilizing the large-scale model tests and waste lime.

  • PDF

A Study on the Model of Sulfidation Kinetics Using Seashell Wastes (패각 폐기물을 이용한 황화반응 모델에 관한 연구)

  • Kim Young-Sik
    • Journal of Environmental Health Sciences
    • /
    • v.30 no.5 s.81
    • /
    • pp.395-401
    • /
    • 2004
  • In this study, lots of methods have been studing to utilize energy and decrease contaminated effluents. There has been great progress on IGCC (Integrated gasification combined cycle) to reduce thermal energy losses. The following results have been conducted from desulfurization experiments using waste shell to remove $H_{2}S$. Unreacted core model ior desulfuriration rate prediction of sorbent was indicated. These were linear relationship between time and conversion. So co-current diffusion resistance was conducted reaction rate controlling step. The sulfidation rate is likely to be controlled primarily by countercurrent diffusion through the product layer of calcium sulfide(CaS) formed. Maximum desulfurization capacity was observed at 0.631 mm for lime, oyster and hard-shelled mussel. The kinetics of the sorption of $H_{2}S$ by CaO is sensitive to the reaction temperature and particle size at $800^{\circ}C$, and the reaction rate of oyster was faster than the calcined limestone at $700^{\circ}C$.