• Title/Summary/Keyword: waste disposal site

Search Result 246, Processing Time 0.027 seconds

Comprehensive Development Plans for the Low- and Intermediate-Level Radioactive Waste Disposal Facility in Korea and Preliminary Safety Assessment (우리나라 중·저준위 방사성폐기물 처분시설 종합개발계획(안)과 예비안전성평가)

  • Jung, Kang Il;Kim, Jin Hyeong;Kwon, Mi Jin;Jeong, Mi Seon;Hong, Sung Wook;Park, Jin Beak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.4
    • /
    • pp.385-410
    • /
    • 2016
  • The disposal facility in Gyeongju is planning to dispose of 800,000 packages of low- and intermediate- level radioactive waste. This facility will be developed as a complex disposal facility that has various types of disposal facilities and accompanying management. In this study, based on the comprehensive development plan of the disposal facility, a preliminary post-closure safety assessment is performed to predict the phase development of the total capacity for the 800,000 packages to be disposed of at the site. The results for each scenario meet the performance target of the disposal facility. The assessment revealed that there is a significant impact of the inventory of intermediate-level radionuclide waste on the safety evaluation. Due to this finding, we introduce a disposal limit value for intermediate-level radioactive waste. With stepwise development of safety case, this development plan will increase the safety of disposal facilities by reducing uncertainties within the future development of the underground silo disposal facilities.

Applying a GIS to Solid and Hazardous Waste Disposal Site Selection (쓰레기매립장 부지선정을 위한 GIS 활용연구)

  • 김윤종;김원영;유일현;백종학;이현우;류중희
    • Korean Journal of Remote Sensing
    • /
    • v.6 no.2
    • /
    • pp.135-151
    • /
    • 1990
  • Solid and hazardous waste disposal site selection by using GIS(Geographic Information System) is the purpose of this study. The criteria of site selection are usually defined in accordance with geological, cultural and social characteristics. Unadequate adaptation of these criteria in a site selection may cause serious problem of water and soil pollution. The environmental information for extraction of these criteria consist of a lot of data : geology, geomorphology, hydrogeology, engineering geology, cultural and social information.... GIS could be easily applied to construct of this environmental information data base, and carry out cartography simulation using overlay mapping technique(polygon overlay). ARC/INFO(GIS system) was used for these studies, and AML(ARC/INFO Macro Language) in this system provided more variable and effective methods for cartography simulation. TM(Thematic Mapper) images were used for the evaluation of land cover/use in the studied area, by using ERDAS image processing system.

Hydrogeochemistry and Statistical Analysis for Low and Intermediate Level Radioactive Waste Disposal Site in Gyeongju (경주 중·저준위 방폐장의 수리지화학 및 통계 분석)

  • Soon-Il Ok;Sieun Kim;Seongyeon Jung;Chung-Mo Lee
    • Journal of the Korean earth science society
    • /
    • v.44 no.6
    • /
    • pp.629-642
    • /
    • 2023
  • Currently, low and intermediate level radioactive waste is being disposed of at the Gyeongju disposal site for permanent isolation. Since 2006, the Korea Radioactive Waste Agency has been conducting site characteristics surveys continuously verifying changes in the site based on the site monitoring and investigation plan. The hydrogeochemical environment of the disposal site is considered for the evaluation of natural barriers. However, the seawater must be considered because of the regional characteristics of Gyeongju, which is near the East Sea. Therefore, this study, collected 30 samples for deriving the groundwater quality data from seven wells and compared with two seawater samples collected from October 2017 to June 2022. Additionally, the study explores the groundwater monitoring method using statistical tools such as clustering and background concentration analysis. The groundwater samples in the study area were classified into two to four clusters depending on their chemical constituents-especially, EC, HCO3, Na, and Cl-using statistical analysis, molar ratio, and K-means clustering.

Rock Mechanics Site Characterization for HLW Disposal Facilities (고준위방사성폐기물 처분시설 부지에 대한 암반역학 부지특성화)

  • Um, Jeong-Gi;Hyun, Seung Gyu
    • Economic and Environmental Geology
    • /
    • v.55 no.1
    • /
    • pp.1-17
    • /
    • 2022
  • The mechanical and thermal properties of the rock masses can affect the performance associated with both the isolating and retarding capacities of radioactive materials within the deep geological disposal system for High-Level Radioactive Waste (HLW). In this study, the essential parameters for the site descriptive model (SDM) related to the rock mechanics and thermal properties of the HLW disposal facilities site were reviewed, and the technical background was explored through the cases of the preceding site descriptive models developed by SKB (Swedish Nuclear and Fuel Management Company), Sweden and Posiva, Finland. SKB and Posiva studied parameters essential for the investigation and evaluation of mechanical and thermal properties, and derived a rock mechanics site descriptive model for safety evaluation and construction of the HLW disposal facilities. The rock mechanics SDM includes the results obtained from investigation and evaluation of the strength and deformability of intact rocks, fractures, and fractured rock masses, as well as the geometry of large-scaled deformation zones, the small-scaled fracture network system, thermal properties of rocks, and the in situ stress distribution of the disposal site. In addition, the site descriptive model should provide the sensitivity analysis results for the input parameters, and present the results obtained from evaluation of uncertainty.

Risk Assessment Framework for Safe Disposal and Reuse of Solidified/Stabilized Wastes (고형화 폐기물의 안정적 처분과 재활용을 위한 환경위해성 평가 체계의 연구)

  • Park, Joo-Yang
    • Journal of the Korean GEO-environmental Society
    • /
    • v.2 no.1
    • /
    • pp.15-22
    • /
    • 2001
  • The key part in risk assessments for disposal sites of solidified/stabilized (S/S) wastes is to predict the contaminant transport from the S/S wastes to the environment under dynamically changing field conditions after characterizing chemical leaching properties of the ash, to evaluate the risk from the predictions, and finally to decide the risk is acceptable. In this paper, a risk assessment framework for disposal and reuse of S/S wastes was developed considering two limiting cases of contaminant leaching. Two types of waste characterization procedures that can determine waste-specific variables for the two limiting cases were developed and verified by applying them to a landfill site of the Municipal Solid Waste incinerator ash solidified/stabilized by cement.

  • PDF

Site Selection Methods for High-Level Radioactive Waste Disposal Facilities: An International Comparison (고준위방사성폐기물 처분시설 부지선정 방식 해외사례 분석)

  • HyeRim Kim;MinJeong Kim;SunJu Park;WoonSang Yoon;JungHoon Park;JeongHwan Lee
    • The Journal of Engineering Geology
    • /
    • v.33 no.2
    • /
    • pp.335-353
    • /
    • 2023
  • Site selection processes for high-level radioactive waste disposal facilities in different countries differ in terms of local geology and degree of public engagement. There seem to be three alternative processes for site selection: (1) selection with community consent after government choice; (2) selection with continuous community engagement after exclusion of unsuitable areas based on existing survey data; or (3) site selection where communities have expressed a willingness to participate. The Yucca Mountain site in Nevada, USA, was selected as the final disposal site by process (1) through six stages, but its development was suspended owing to opposition from the local governor and environmental groups. In Sweden, Switzerland, and Germany, process (2) is used and sites are selected through three stages. Sweden and Switzerland have completed site selection, and Germany is currently engaged in the process. The UK adopted process (3) with six stages, although the process has been suspended owing to poor community participation. In Korea, temporary storage facilities for spent nuclear fuel will reach saturation from 2030, so site selection must be promoted through various laws and systems, with continuous communication with local communities based on transparent and scientifically undertaken procedures.

KAERI Underground Research Tunnel (KURT) (한국원자력연구원 지하처분연구시설)

  • Cho, Won-Jin;Kwon, Sang-Ki;Park, Jeong-Hwa;Choi, Jong-Won
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.3
    • /
    • pp.239-255
    • /
    • 2007
  • An underground research tunnel is essential to validate the integrity of a high-level waste disposal system, and the safety of geological disposal. In this study, KAERI underground research tunnel(KURT) was constructed in the site of Korea Atomic Energy Research Institute(KAERI). The results of the site investigation and the design of underground tunnel were presented. The procedure for the construction permits and the construction of KURT were described briefly. The in-situ experiments being carried out at KURT were also introduced.

  • PDF