• 제목/요약/키워드: waste concretes

검색결과 67건 처리시간 0.017초

석탄폐석을 이용한 콘크리트의 역학적 거동 (Mechanical Behavior of Coal Mine Waste Concretes)

  • 이봉학
    • 산업기술연구
    • /
    • 제16권
    • /
    • pp.105-112
    • /
    • 1996
  • This paper presents coal mine waste (CMW) for use in concrete manufacture as a replacement of normal aggregates. The CMW in this study was collected from Sabook, Jungson-kun, Kangwon-do. Fine and coarse asggregates from CMW were prepared by crushing it in a jaw crusher and separating debris with #4 sieve. CMW aggregates showed good physical and mechanical properties with having specific gravity over 2.65, absorption less than 1%, and abration ratio below 20%, but particle shape of CMW was long or flat, which caused a poor workability in mixing. Therefore, to make workability better, a 1/4 of CMW coarse aggregate was replaced with normal aggregate which had a good particle shape, and a superplasticizer was added to the mix. Compressive strength and other mechanical properties of CMW concrete was very good. In conclusion, characteristics of CMW concrete was acceptable for use as a concrete structural material.

  • PDF

천연우라늄 오염에 관한 방사선/능 측정기술 연구 (A Study on the Natural Uranium Contamination Measuring Technology)

  • 정운수;홍상범;서범경;박진호;조용우;조성원;이정민
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2004년도 학술논문집
    • /
    • pp.407-417
    • /
    • 2004
  • 본 연구는 우라늄변환시설의 해체과정에서 발생되는 콘크리트 및 구성부품에 대한 알파분광과 감마분광에 대한 방사선계측방법의 타당성을 입증하고자 한다. 우라늄변환시설내의 구성부품 및 내부벽면은 천연우라늄 물질로 오염되어있다. 스테인레스 스틸 파이프와 벽면의 콘크리트의 일부에 대하여 시료를 채취하고 알파분석과 감마분석을 수행하였다. 천연우라늄 시료(AUC)의 측정에서 0.01 Bq/g 이상에서는 알파선 측정결과와 감마선 측정결과가 잘 일치하지만, 0.005 Bq/g의 낮은 농도에서는 감마선 측정결과가 상대적으로 높게 평가된다. 변환공정의 천연우라늄인 $^{238}U$$^{214}Pb$, $^{214}Bi$$^{234}Th$, $^{234m}Pa$을 비교 측정하여 그 농도를 구할 수 있다. 우라늄변환시설의 벽면은 대부분 우라늄으로 오염되어있다. 우라늄변환시설 해체과정에서 발생되는 배경방사능 준위의 폐기물을 감마분광법을 이용하여 계측하여 보수적인 평가 자료로 활용할 수 있다.

  • PDF

Predictive models of hardened mechanical properties of waste LCD glass concrete

  • Wang, Chien-Chih;Wang, Her-Yung;Huang, Chi
    • Computers and Concrete
    • /
    • 제14권5호
    • /
    • pp.577-597
    • /
    • 2014
  • This paper aims to develop a prediction model for the hardened properties of waste LCD glass that is used in concrete by analyzing a series of laboratory test results, which were obtained in our previous study. We also summarized the testing results of the hardened properties of a variety of waste LCD glass concretes and discussed the effect of factors such as the water-binder ratio (w/b), waste glass content (G) and age (t) on the concrete compressive strength, flexural strength and ultrasonic pulse velocity. This study also applied a hyperbolic function, an exponential function and a power function in a non-linear regression analysis of multiple variables and established the prediction model that could consider the effect of the water-binder ratio (w/b), waste glass content (G) and age (t) on the concrete compressive strength, flexural strength and ultrasonic pulse velocity. Compared with the testing results, the statistical analysis shows that the coefficient of determination $R^2$ and the mean absolute percentage error (MAPE) were 0.93-0.96 and 5.4-8.4% for the compressive strength, 0.83-0.89 and 8.9-12.2% for the flexural strength and 0.87-0.89 and 1.8-2.2% for the ultrasonic pulse velocity, respectively. The proposed models are highly accurate in predicting the compressive strength, flexural strength and ultrasonic pulse velocity of waste LCD glass concrete. However, with other ranges of mixture parameters, the predicted models must be further studied.

Valorization of marble's waste as a substitute in sand concrete

  • Ouassila, Boughamsa;Houria, Hebhoube;Leila, Kherref;Mouloud, Belachia;Assia, Abdelouahed;Chaher, Rihia
    • Advances in concrete construction
    • /
    • 제9권2호
    • /
    • pp.217-225
    • /
    • 2020
  • The recovery of waste proves a solution with two impacts: the environmental impact by the reduction of pollution and the gain of the occupied space by this waste, and the economic impact by the use of these lasts in the building and in the area of public works. The present research consists in recovering a waste marble (thrown powder exposed to the different meteorological phenomena) generated by the quarry marble of Fil-fila, located at the east side of Skikda in the north-east of Algeria, and add it, as sand in the composition of sand concrete. To carry out this research, we analyzed the evolution brought by the substitution of ordinary sand by marble waste sand, with 25%, 50%, 75% and 100% on the properties in the fresh state (density, workability and air content) and in the cured state (compressive strength, tensile strength, surface hardness and sound velocity). For durability we tested water absorption by immersion and chloride penetration. The results obtained are compared with control samples of 0% of substitution rate. In order to have a good filling of the voids in the granular skeleton; we added a quantity of limestone recycled fines from the quarries and for a good workability a super-plasticizing additive. The results showed that the partial substitution modified both the fresh and the hardened characteristics of the tested concretes, the durability parameters also improved.

주물고사 첨가 아스팔트 콘크리트의 특성에 관한 연구 (Characteristics of Asphalt Concrete using Waste Foundry Sand)

  • 김광우;고동혁;최동춘;김성운;김중열
    • 한국도로학회논문집
    • /
    • 제3권4호
    • /
    • pp.105-116
    • /
    • 2001
  • 본 연구는 주물고사를 이용한 아스팔트 콘크리트와 주물고사의 물리적 화학적 특성을 비교 분석하는 것이다. 주물고사의 아스팔트 콘크리트 적용성을 평가하기 위하여 XRF, SEM, 제타전위를 측정하여 주물고사의 물리 화학적 특성을 알아보았다. 주물고사 아스팔트 콘크리트의 박리저항성을 향상시키기 위하여 박리방지제(소석회(Hydrated lime), 액상박리방지제)를 사용하였다. 그리고 주물고사 아스팔트 콘크리트 혼합물의 인장특성과 내구성 향상을 위하여 LDPE를 사용하였다. 또한 주물고사 아스팔트 콘크리트의 공용성을 알아보기 위하여 간접인장강도, 수분취약성시험, 동결 융해시험, 반복주행시험을 수행하였다. 시험결과 주물고사 아스팔트 콘크리트의 역학적 특성이 일반 아스팔트 콘크리트에 비해 같거나 향상되는 것으로 나타났다. 따라서 주물고사를 아스팔트 콘크리트에 재활용할 수 있다는 결론을 얻었다.

  • PDF

Determination of X-ray and gamma-ray shielding capabilities of recycled glass derived from deteriorated silica gel

  • P. Sopapan;O. Jaiboon;R. Laopaiboon;C. Yenchai;C. Sriwunkum;S. Issarapanacheewin;T. Akharawutchayanon;K. Yubonmhat
    • Nuclear Engineering and Technology
    • /
    • 제55권9호
    • /
    • pp.3441-3449
    • /
    • 2023
  • We determined the radiation shielding properties for 10CaO-xPbO-(90-x) deteriorated silica gel (DSG) glass system (x = 20, 25, 30, 35, 40, and 45 mol.%). The mass attenuation coefficient (MAC) has been estimated at photon energies of 74.23, 97.12, 122, 662, 1173, and 1332 keV using a narrow beam X-ray attenuation and transmission experiment, the XCOM program, and a PHITS simulation. The obtained MAC values were applied to estimate the half value layer (HVL), mean free path (MFP), effective atomic number, and effective electron density. Results show that the MAC value of the studied glasses ranges between 0.0549 and 1.4415 cm2/g, increases with the amount of PbO, and decreases with increasing photon energy. The HVL and MFP values decrease with increasing PbO content and increase with increasing photon energy. The recycled glass, with the addition of PbO content (20-45 mol.%), exhibited excellent radiation shielding capabilities compared to standard barite and ferrite concretes and some glass systems. Moreover, the experimental radiation shielding parameters agree with the XCOM and PHITS values. This study suggests that this new waste-recycled glass is an effective and cost-saving candidate for X-ray and gamma-ray shielding applications.

폐콘크리트 파쇄 방법에 따른 재생골재 콘크리트의 물성에 관한 실험적 연구 - 전기충격식 수중파쇄 시스템을 이용한 재생골재를 중심으로 - (A Experimental Study on Properties Matter of Recycle Aggregate Concrete Crush Method Waste-Concrete - Focused on the Recycle Aggregate used Electrical Crusher System in Underwater -)

  • 박희곤;조상영;백민수;이영도;양극영;정상진
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2002년도 학술논문발표회
    • /
    • pp.51-55
    • /
    • 2002
  • The production accounts of domestic by-product is increased after 1990's. It is worried about the life reduction of dump land, as dump land's capacity have reached to limitation and the amount of construction industrial wastes is going higher Recently, Recycling aggregates could be gained from the reconstruction works using recycle process. and the study and research of recycle concretes developed concrete application methods, It could put some outcome of studies to practical use for concrete products. The methods of crushing waste concrete are going diverse. In this study, the fundamental experiments and recycling application is investigated and analyzed with use of recycling aggregate which made of mechanical crush and underwater electrical impact crush. and the difference between underwater electrical impact crush, mechanical crush and natural aggregates is studied.

  • PDF

Effects of glass powder on the characteristics of concrete subjected to high temperatures

  • Belouadah, Messaouda;Rahmouni, Zine El Abidine;Tebbal, Nadia
    • Advances in concrete construction
    • /
    • 제6권3호
    • /
    • pp.311-322
    • /
    • 2018
  • This paper presents an experimental investigation on the performance of concrete with and without glass powder (GP) subjected to elevated temperatures. Mechanical and physicochemical properties of concretes were studied at both ambient and high temperatures. One of the major environmental concerns is disposal or recycling of the waste materials. However, a high volume of the industrial production has generated a considerable amount of waste materials which have a number of adverse impacts on the environment. Further, use of glass or by-products in concrete production has advantages for improving some or all of the concrete properties. The economic incentives and environmental benefits in terms of reduced carbon footprint are also the reason for using wastes in concrete. The occurrence of spalling, compressive strength, mass loss, chemical composition, crystalline phase, and thermal analysis of CPG before and after exposure to various temperatures (20, 200, 400, and $600^{\circ}C$) were comprehensively investigated. The results indicated that, the critical temperature range of CPG was between $400^{\circ}C$ and $600^{\circ}C$.

Utilising artificial neural networks for prediction of properties of geopolymer concrete

  • Omar A. Shamayleh;Harry Far
    • Computers and Concrete
    • /
    • 제31권4호
    • /
    • pp.327-335
    • /
    • 2023
  • The most popular building material, concrete, is intrinsically linked to the advancement of humanity. Due to the ever-increasing complexity of cementitious systems, concrete formulation for desired qualities remains a difficult undertaking despite conceptual and methodological advancement in the field of concrete science. Recognising the significant pollution caused by the traditional cement industry, construction of civil engineering structures has been carried out successfully using Geopolymer Concrete (GPC), also known as High Performance Concrete (HPC). These are concretes formed by the reaction of inorganic materials with a high content of Silicon and Aluminium (Pozzolans) with alkalis to achieve cementitious properties. These supplementary cementitious materials include Ground Granulated Blast Furnace Slag (GGBFS), a waste material generated in the steel manufacturing industry; Fly Ash, which is a fine waste product produced by coal-fired power stations and Silica Fume, a by-product of producing silicon metal or ferrosilicon alloys. This result demonstrated that GPC/HPC can be utilised as a substitute for traditional Portland cement-based concrete, resulting in improvements in concrete properties in addition to environmental and economic benefits. This study explores utilising experimental data to train artificial neural networks, which are then used to determine the effect of supplementary cementitious material replacement, namely fly ash, Ground Granulated Blast Furnace Slag (GGBFS) and silica fume, on the compressive strength, tensile strength, and modulus of elasticity of concrete and to predict these values accordingly.

표면처리방법을 이용한 순환 굵은골재의 물성 평가 및 순환골재 콘크리트의 특성 연구 (A Study on the Property Estimation of Recycled Coarse Aggregate and Characteristic of Recycled Aggregate Concrete Using the Surface Coated Treatment Method)

  • 김남욱;김혁중;배주성
    • 대한토목학회논문집
    • /
    • 제28권4A호
    • /
    • pp.603-609
    • /
    • 2008
  • 폐콘크리트로부터 생산되는 순환골재는 천연골재에 비해 품질이 나쁜 단점이 있어 이를 개선하는 것이 순환골재를 재활용하는데 있어서 선결과제라 할 수 있다. 본 연구에서는 콜로이달 실리카용액을 이용한 표면처리 방법으로 순환골재의 품질을 개선하고, 품질이 개선된 표면처리 순환골재를 활용한 콘크리트의 역학적 특성 및 내구성능을 타 콘크리트와 비교 분석하여 순환골재를 실제 콘크리트 시설물 축조에 콘크리트용 골재로서 활용 가능성을 규명하고자 한다.