• Title/Summary/Keyword: waste combustion

Search Result 348, Processing Time 0.028 seconds

A Study on Combustion Characteristics of the Bio-drying SRF in 5 Ton/day Scale Combustion Boiler (5톤/일 규모의 연소보일러에서 Bio-drying 고형연료의 연소특성 연구)

  • Kim, Dong-Ju;Yoon, Young-Sik;Jeong, Bup-Mook;Park, Yeong Su;Seo, Yong-Chil;Lee, Byung-Sun
    • Journal of Korea Society of Waste Management
    • /
    • v.35 no.7
    • /
    • pp.600-605
    • /
    • 2018
  • In this study, the combustion characteristics were investigated based on the biodrying solid recovered fuel (SRF) in a 5 Ton/day scale combustion boiler. The composition of the combustion gas containing the biodrying SRF was analyzed, the particulate matter, and its HCl content was determined with the air pollutant process test method. Mass balance, carbon balance, and combustion efficiency were calculated according to the equivalence ratio (ER) method; the energy recovery efficiency of the combustion boiler was also analyzed. The overall combustion efficiency of the biodrying SRF was 97.3 % and the energy recovery efficiency was 80.2%.

A Three-Dimensional Numerical Model for the Investing of Combustion Characteristics and Optimization of Operating Performances in Municipal Waste Incinerator (도시 폐기물 소각로의 연소특성 및 운전성능 최적화를 위한 3차원 수치모델링)

  • 전영남;정오진;송형운
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.2
    • /
    • pp.85-94
    • /
    • 2002
  • In this study, a 3-dimensional numerical model, has been developed applied for the investigation of combustion characteristics, and used to optimize operating conditions in MSW incinerator, in Gwangju. The model developed in this study has been verified by exacting both the predicted and the measured temperature in combustion chamber which has been operated to provide a reference condition. By predictive results, the Sangmoo incinerator has a good characteristics of combustion and low emission however after burning zone produced incomplete products, also probably because the supply of primary air was not enough. Parametric screening studies have been conducted to study optimal operating conditions. For the optimal combustion characteristics, operating conditions should be adjusted with the waste properties.

Discussion on the Practical Use of CFD for Grate Type Waste Incinerators (회격자식 소각로의 열유동 해석과 결과 분석에 대한 고찰)

  • Ryu C.;Choi S.
    • Journal of computational fluids engineering
    • /
    • v.7 no.3
    • /
    • pp.17-26
    • /
    • 2002
  • Computational fluid dynamic(CFD) analysis has been frequently applied to the waste incinerators to understand the flow performance for various design and operating parameters. Since the computational modeling inevitably requires many simplifications and complicated sub-models, validity of the results should be carefully evaluated. In this study, major computational modeling and procedure of usual simulation methods for the grate-type waste incinerators were assessed. Usual simulation method does not explicitly incorporate the waste combustion, simply by assuming the combustion gas properties from the waste bed which is treated as an inlet plane. However, effect of this arbitrary assumption on the overall flow pattern is not significant, since the flow pattern is dominated by strong pattern of jet flows of the secondary air. Thus, this method is valid in understanding the effect of flow-related parameters. In analyzing the results, deriving conclusive information directly from temperature and chemical species concentration should be avoided, since the model prediction for the gaseous reaction and the radiation reveals significant discrepancies against the actual phenomena. Use of quantitative measures such as residence time is very efficient in evaluating the flow performance.

Behavior of Radioactive Metal Surrogates Under Various Waste Combustion Conditions

  • Yang, Hee-Chul;Lee, Jae-Hee;Kim, Jung-Guk;Yoo, Jae-Hyung;Kim, Joo-Hyung
    • Nuclear Engineering and Technology
    • /
    • v.34 no.1
    • /
    • pp.80-89
    • /
    • 2002
  • A laboratory investigation of the behavior of radioactive metals under the various waste combustion atmospheres was conducted to predict the parameters that influence their partitioning behavior during waste incineration. Neodymium, samarium, cerium, gadolinium, cesium and cobalt were used as non-radioactive surrogate metals that are representative of uranium, plutonium, americium, curium, radioactive cesium, and radioactive cobalt, respectively. Except for cesium, all of the investigated surrogate metal compounds converted into each of their stable oxides at medium temperatures from 400 to 90$0^{\circ}C$, under oxygen- deficient and oxygen-sufficient atmospheres (0.001-atm and 0.21-atm $O_2$). At high temperatures above 1,40$0^{\circ}C$, cerium, neodymium and samarium in the form of their oxides started to vaporize but the vaporization rates were very slow up to 150$0^{\circ}C$ . Inorganic chlorine (NaCl) as well as organic chlorine (PVC) did not impact the volatility of investigated Nd$_2$O$_3$, CoO and Cs$_2$O. The results of laboratory investigations suggested that the combustion chamber operating parameters affecting the entrainment of particulate and filtration equipment operating parameters affecting particle collection efficiency be the governing parameters of alpha radionuclides partitioning during waste incineration.

A Study on Combustion Characteristics for Dry Food Waste (음식폐기물의 고형연료화를 위한 연소특성 연구)

  • Sang, Byoungchan;Lee, Seungjeong;Lee, Doyeon;Ohm, Taein
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.30 no.4
    • /
    • pp.101-108
    • /
    • 2022
  • This study analyzed the physicochemical properties and combustion characteristics of dry food waste to evaluate the possibility of using food waste as a solid refuse fuel (SRF). The characteristics of dry food waste as a fuel were analyzed by comparing the difference in properties with SRF, and the combustion characteristics after conversion into fuel were identified. Ultimate analysis, proximate analysis, calorific value analysis, and TGA analysis were conducted using two types of food waste and two types of SRF, and the following results were obtained. The moisture content and ash content of dry food waste were 1.7~10.0 wt.% and 7.8~11.7 wt.%, respectively, which satisfied the quality standards for SRF. The low calorific value of dry food waste was 4,000 ~ 4,720 kcal/kg, which was higher than the quality standard of 3,500 kcal/kg for SRF. As a result of TGA analysis of dry food waste, the combustion reaction started at about 200 ℃ and the highest burning rate was at about 500 ℃. After moisture evaporation between 100 and 200 ℃, initial volatile matter, carbon and residual volatile matter were released and burned between 200 and 500 ℃. Based on the high calorific value and low moisture and ash content of dry food waste, it is considered that it is possible to convert dry food waste into SRF through the application of efficient drying technology and strict quality standard inspection in the future.

A study on the recovery of useful components from waste tire (폐타이어로부터 유용성분의 회수에 관한 연구)

  • 이덕수
    • Journal of environmental and Sanitary engineering
    • /
    • v.9 no.2
    • /
    • pp.88-100
    • /
    • 1994
  • A study on the recovery of useful components from waste tire. This study was carried out investigate the recovery of fuel oil condensed from gases formed in the pyrolysis of waste tire. Energy to require the pyrolysis of waste tire was used the heat that was produced by the combustion of the gases from the pyrolysis of waste tire itself. The results are as follows; 1. Energy to require forming the fuel oil by the pyrolysis of waste tire was used only 1/6 quantities of waste tire for forming fuel oil. 2. The formed fuel oil were light oil, Kerosene and gasoline 3. The pollutants of combustion gas of patronizable gases was lower than standard Value.

  • PDF

Decomposition of Liquid Wastes(Waste Oil & Solvents) under High Temperature Conditions (산업단지 발생 액상폐기물(폐유와 폐유기용제)의 고온연소 특성)

  • Kim, Min-Choul;Lee, Jae-Jeong;Suk, Min-Kwang;Lee, Gang-Woo;Shon, Byung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.12
    • /
    • pp.3761-3767
    • /
    • 2009
  • This study was investigated to determine the combustion characteristics, decomposition efficiency, and the flue gas concentrations after combustion in the high temperature reactor($1,250{\sim}1,400^{\circ}C$, 1 atm) for the liquid wastes(waste oil and waste solvent) generated from the industrial complex. The concentration of nitrogen oxide(NOx) is decreased and the synthetic gas is increased when the mass ratio of $O_2$/waste is about 1.53 because the reaction condition was changed to reduction state. And BTEXs(benzene, toluene, ethylbenzene, xylene) are decomposed more than 99.99%. If the highly concentrated liquid waste (waste oil and waste solvent) is treated under the operating conditions suggested by this study, our treatment method for the liquid waste was found to be proper because of the contaminants emission concentration is very low. In addition, the synthetic gas after combustion can be used as an alternative fuel.

Flow Analysis for the Geometry Optimization of Combustion Chamber of Central Flow Type Waste Incinerator (중간류식 폐기물 소각로 연소실의 최적형상 설계를 위한 유동해석)

  • Lee, Jin-Uk;Kim, Seong-Bae;Yun, Yong-Seung;Kim, Hyeon-Jin;Heo, Il-Sang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.2
    • /
    • pp.252-259
    • /
    • 2001
  • Computational study has been performed to observe the flow characteristics of combustion chamber for geometrical modification in municipal solid waste incinerator. A series of geometrical modification has been carried out as an attempt to reduce the size of recirculation zone, to obtain uniform flow field in the secondary combustion chamber and to improve the mixing of combustion gas. Two dimensional non-reacting turbulent flow has been studied as the first step to get such goals and the result of design optimization is presented. In addition, three dimensional non-reacting and reacting flow analyses were performed to verify the validity of two dimensional approach.

Study for a Secondary Air Affecting Fluid Flow in a Solid Waste Incinerator (쓰레기 소각로의 2차공기가 유동현상에 미치는 현상 연구)

  • Lee, Geum-Bae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.9
    • /
    • pp.2924-2932
    • /
    • 1996
  • As the environmental pollution can be greatly reduced and the waste heat can be also recovered through a combustion of municipal solid waste, the incineration begins to be highlighted recently in our country. But it is very difficult to be operated with constant combustion conditions for a long time as the domestic waste is composed of various components, contains a large percentage of water, and has a low heating value. Therefore, the cold flow test and partial hot flow test were conducted in the incinerator by use of injection angles of a secondary air affecting fluid flow as the first action to maintain the optimum combustion conditions. A model to a scale of 1:10 was designed and manufactured through the similarity of model and prototype flows. Velocities and temperatures were measured through the experiment. From the results, fluid flows of secondary air obtained from partial hot flow test correspond almost well with those of main flow obtained from cold flow test. Consequently, injection angles of secondary air are proved to affect main flow decisively.

Disposal of Highly Toxic Wastes by using High Temperature and High Pressure Combustor (난분해성 환경오염물질의 고온.고압연소)

  • Yoon, Jae-Kun;Hong, Ho-Yeun;Lee, Jeong-Woo;Kim, Jong-Pyo;Kang, Su-Sok
    • 한국연소학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.75-78
    • /
    • 2006
  • Disposal of highly toxic wastes like polychlorinated biphenyls (PCBs) is very difficult. These substances create a growing mountain of problematic waste that has to be disposed properly. Conventional technologies that are based on common burning(rotary kiln, ${\sim}1100^{\circ}C$) and plasma technology(${\sim}10000^{\circ}C$) do not satisfy important conditions. for example, complete combustion of the toxic waste and the price of waste disposal. The combustor like a rocket engine is operated at relatively high pressure(${\sim}15$ bar) and relatively high temperature(>$3000^{\circ}C$) that are ideal for the complete destruction of extremely toxic substances. In this study, test compound($_o-DCB$) was dissolved in kerosine with a concentration of 10%. Pure gas oxygen was used as an oxidant. Analysis showed that the destruction efficiency achieved for ${o}-DCB$ was 99.9999% or better. The results show that a combustor based on liquid propllant rocket technology is a validated tool for the disposal of highly toxic waste, and a good alternative technology when applied to the destruction of extremely toxic wastes.

  • PDF