• Title/Summary/Keyword: waste ammunition

Search Result 6, Processing Time 0.021 seconds

Development of dissolvable technique and equipment for small caliver ammunition (소구경 탄약 분해기술 및 장비개발)

  • Koo, Kyung-Hoe;Lee, Jae-Hwa;Kim, Seok;Jung, Hyun-Su
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1916-1920
    • /
    • 2003
  • By development of dissolvable technique and equipment for warhead, empty cartridge and ammunition in small caliver, pollution of environment and waste of resources problems brought by existing incinerative abrogation can be fundamentally prevented. In addition, Automatic high-speed mechanically dissolving technique using indexing equipment developed in this study makes possible curtailment of manpower and recycling treatment of recources.

  • PDF

A Study on Controlling the Effects of the Internal Explosion of the Explosive Disposal Structure (폭발물 처리 구조물의 내부폭발 영향 제어에 관한 연구)

  • 강영철;최정욱
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.204-212
    • /
    • 2000
  • The waste ammunitions have been accumulated in excessive amounts these days. This study focused on the problems related to the method of ammunition disposal which leads the explosion inside the enclosure structure and controls the effects of detonation. This study enables us to design a new type of explosive disposal facilities that would fit to our environments. And this study gives us the prototype design of the explosive disposal structure that are explored in this research and will give us a chance to develop a new type structure that have not been devised by Army, and also will be applicable to construct a civilian explosive disposal structure located in airports, harbors, and public facilities.

  • PDF

Study on the Improving Thermal and Mechanical Properties of Eco-friendly Materials used for Training Ammunition (연습용 탄약 친환경 재료의 내열성 및 기계적 특성 향상에 관한 연구)

  • Kim, Myung-Hyun;Shon, Byoung-Chul;Lee, Young-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.557-562
    • /
    • 2018
  • Unlike live ammunition which has killing power due to the use of high explosives, training ammunition has only the limited explosive effect needed for training purposes, so the risk of accidents is lowered. Because training ammunition is used in large quantities during military drills, the problem of environmental pollution occurs. As most of the waste is left out in the training field, using bio-degradable polymers such as Polylactic Acid (PLA) can provide a solution to these environmental issues. However, bio-degradable polymers such as PLA usually have poor thermal and mechanical properties compared with other general purpose polymers, so they need to be improved before they can be used for military purposes. In this study, Talc is added to the PLA used for the parts of Training Grenades to improve some of their properties and the changes of their thermal and mechanical properties were verified. In the case of the 1 wt.% ~ 5 wt.% PLA/Talc blends, the thermal properties were improved in proportion to the content of Talc, but the best mechanical properties were observed for the 1 wt.% and 3 wt.% PLA/Talc blends.

Current Status and Prospects of Eco-friendly Disposal Processes for Waste Explosives (폐화약류의 친환경적 폐기처리 공정의 최근 현황 및 전망)

  • Tae Ho Kim;Deok Yeol Kim;Jong Min Kim
    • Clean Technology
    • /
    • v.29 no.1
    • /
    • pp.1-9
    • /
    • 2023
  • Waste explosives such as useless ammunition discharged from the military and coproduced useless explosives during the manufacturers production process have been continuously produced. These are difficult to dispose with normal waste treatment facilities due to the dangers of fire and explosion. An open burning or an open detonation at military designated disposal facilities is a classical treatment method for the dangerous explosives. The classical method raises various environmental problems by the emission of hazardous materials. An air pollution by the emission of hazardous gases such as SOx and NOx, soil and water contaminations by the accumulation of non-biodegradable heavy metals, are representative pollution examples. To overcome these problems, various processes for eco-friendly waste treatment methods have been developed, and some processes have already been operated in some countries. In the current report, various eco-friendly disposal processes for waste explosives or harmful materials, and their advantages and disadvantages are documented to suggest future development directions for reducing the hazardous substances by the treatment processes.

Incineration for Demilitarization of Waste Cyclotol (회수 Cyclotol의 비군사화를 위한 소각공정)

  • Lee, Si-Hwang;Baek, Seung-Won;Moon, Il;Park, Jung-Su;Kim, Hyoun-Soo;Oh, Min
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.545-550
    • /
    • 2016
  • Demilitarization involves the disposal and recovery of obsolete explosives or ammunition. Cyclotol has been used as a military explosive along with RDX and HMX. A limited number of processes exist for safe disposal due to their sensitivity to thermal shock. Rotary kilns are widely used for thermal decomposition in many countries due to cost effectiveness and simplicity compared with supercritical oxidation. Phase change as well as condensed phase reactions(CPRs) and gas phase reactions(GPRs) with rates described by the Arrhenius equation of cyclotol has been considered in this work. Changes in gas fraction, reaction rate and mass of explosives were predicted at 490, 505 and 575 K. A maximum temperature of 2062 K has been predicted within the reactor at an initial temperature of 575 K due to GPRs. From this research, Thermal decomposition in the rotary kiln is plausible for demilitarization.

Separation of Waste TNT and RDX Mixture Using SMB Process (SMB 공정을 이용한 폐기 TNT와 RDX 혼합 용액의 분리)

  • Oh, Donghoon;Kim, Sunhee;Lee, Keundeuk;Ahn, Iksung;Lee, Chang-Ha
    • Clean Technology
    • /
    • v.23 no.2
    • /
    • pp.163-171
    • /
    • 2017
  • Currently, researches on recycling and reuse of waste energetic materials have recently gained a great attention from advanced countries due to ever tightening environmental regulations. In this study, as a part of a recycling technology, the experiments and dynamic simulation of simulated moving bed (SMB) process were performed to efficiently separate TNT and RDX from their mixture, which are main components of ammunition. In order to determine the operation zone of SMB process, the retention times of TNT and RDX were measured using HPLC at different flow rates and the adsorption equilibrium of each component was obtained by using a moment method. According to the adsorption equilibrium and the triangle theory of SMB process, four operation points were determined and separation experiments were carried out by the SMB process using the solvent consisting of acetonitrile and water. Two different mixing ratios (6:4 and 1:1) of acetonitrile and water were chosen for the experiment due to the great impact of mixing ratio of the solvent on separation. The performance of SMB process was evaluated by purity, recovery, productivity and solvent consumption. Pure TNT and RDX were successfully obtained from the SMB process and the dynamic simulation for the SMB process agreed well with the experimental results. Therefore, the dynamic model could be applied for predicting the dynamic behavior of the SMB process and designing a large scale SMB process.