• Title/Summary/Keyword: waste PE

Search Result 60, Processing Time 0.031 seconds

A Study far Improvement of Disposal and Collection System of Agricultural PE Waste (농업용 폐비닐의 농가처리 및 수거제도 개선방안)

  • Kang, Chang-Yong
    • Journal of Environmental Policy
    • /
    • v.2 no.1
    • /
    • pp.51-75
    • /
    • 2003
  • The objective of this study is to analyze the problems of disposal and collection, including administrative management of agricultural PE waste and suggest effective management measurements. Information regarding problems of agricultural PE waste management were collected from field survey of farmers, regional governments and officials. On the national level, the low ratio of collection for optimal treatment of agricultural PE waste is a critical problem. , the negative discharging behavior of farmers, an illegal incineration and landfill of farmers and a lack of education and extension etc. An ambiguity of the management principle to agricultural PE waste, the differences in management among the regional governments, a lack of will of the regional governments and officials to realize SARD and lack of education and extension etc. are some of the problems in administrative management of agricultural PE waste collection. The major suggestions of this study are as follows : (1) to strengthen education and extension, (2) to adopt an improved economic incentive system and strong, lawful regulation simultaneously, (3) to use temporang collection and permanent collection site, and (4) to organize "OTC(Optimal Treatment Conference)" composed of farmers, regional cooperative, PE producers etc. for operating an effective management system.

  • PDF

A Study on Recycling of Waste Polyethylene Film (폐폴리에틸렌 필름의 재활용에 관한 연구)

  • Lee, Hwan-Kwang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.1
    • /
    • pp.182-188
    • /
    • 2008
  • The compounds of recycled polyethylene(PE) and fly-ashes were prepared. Polymers used were sorted PE from mixed plastics of household waste and Low Density Polyethylene(LDPE) and Linear Low Density Polyethylene(LLDPE) recycled from the scrap of packaging film plants. Fly-ashes were from the power plant and from the household waste incinerator. The tensile strength of recycled LDPE and LLDPE compounds decreased and the flexural modulus increased with greater amount of the power plant fly-ash. Anthracite fly-ash gave rise to slightly higher tensile and flexural strength of the LLDPE mixtures than bituminous coal fly-ash presumably due to higher content of unburned carbon. The incinerator fly-ash introduced to household waste PE enhanced both tensile strength and flexural modulus of the compounds. When LDPE and household waste PE were used together, the synergistic effect of incinerator fly-ash to household waste PE was offset by reduced crystallization of LDPE due to the filler particle. The compounds of household waste PE and incinerator fly-ash might be applied to structural materials for such as sewage pipe, which reduces the waste treatment cost and conserve the environment and resources.

Analysis of Recycled Raw Materials and Evaluation of Characteristics by Mixing Ratio for Recycling of Waste Vinyl (폐비닐 재활용을 위한 재생원료 분석 및 배합비율에 따른 특성 평가)

  • Ahn, Nak-Kyoon;Lee, Chan gi;Kim, Jung-Hwan;Park, Pil Hwan;Kim, Seung-Hwan;Yoon, Jin-Ho
    • Resources Recycling
    • /
    • v.30 no.1
    • /
    • pp.53-59
    • /
    • 2021
  • Waste vinyl generated from household waste has been used as a solid refuse fuel (SRF) due to the presence of impurities such as soil, metal, and glass; however, the amount of SRF used has been decreasing owing to recent environmental problems, thereby necessitating the need for recycling. In this study, the mixed recycled raw material produced from household waste vinyl and polyethylene (PE) single recycled raw material produced from agricultural waste vinyl were examined. Raw material analysis revealed that waste vinyl was mainly composed of polyethylene, and approximately 2% of ash remained in the mixed recycled raw material, whereas no ash was found in the PE single recycled raw material. In addition, the analysis of tensile strength according to the mixing ratio of the two recycled raw materials revealed that the highest tensile strength was approximately 16 MPa under the heat treatment temperature of 200 ℃, compression pressure of 30 MPa, and a mixing ratio of 3:7 (mixed:PE single). In addition, the highest bending strength was approximately 39 MPa under the heat treatment temperature of 200 ℃, compression pressure of 30 MPa, and a mixing ratio of 3:7 (mixed:PE single). Therefore, the possibility of recycling waste vinyl was suggested by investigating the change in strength characteristics according to the mixing ratio of the recycled raw materials.

A Development of the Stabilization Technology for the Solid Form of Radioactive Waste (방사성폐기물 아스팔트 고화체 안정화 특성연구)

  • 김태국;이영희;이강무;안섬진;손종식
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.202-206
    • /
    • 2003
  • In this study, a modified bituminization technology has been developed, which needs no grinding of the granular resin waste, and enables the solid form to keep its shape stability as good as that of a cemented solid from Also, the study intended to apply the developed technology to the practical treatment of radioactive resin waste. In the experiment, the granular type resin was used and the straight-run distillation bitumen with penetration rate 60/70 was used as the solidifying agent. The PE was used as the additive. The shape stability increased remarkably with the additive of PE, which act as a binder in the solid form. The shape of the solid form was maintained without failure during the long-term exposure test when the additive content of spent PE is more than 10wt%. The proper ranges of bitumen content, PE content and operating temperature are 30-50wt%, 10-20wt% and $180^{\circ}C$ respectively. The bituminized solid form of radioactive resin waste by the technology of this study has the remarkably superior quality than the conventional solid forms, partially for the shape stability.

  • PDF

Effects of PE (Polyethylene) and GF (Glass Fiber) Addition on Tensile Strength and Elongation of ABS (Acrylonitrile Butadiene Styrene) Recovered from Waste LCDs (폐(廢)LCD에서 회수(回收)된 ABS(Acrylonitrile Butadiene Styrene)의 인장강도(引張强度)와 연신율(延伸率)에 미치는 PE(Polyethylene)와 유리섬유(纖維)(Glass Fiber) 첨가효과(添加效果))

  • Lee, Sungkyu;Cho, Sung-Su;Lee, Soo-Young;Park, Jae Layng;Hong, Myung Hwan;Hong, Hyun Seon
    • Resources Recycling
    • /
    • v.22 no.3
    • /
    • pp.50-56
    • /
    • 2013
  • Recycled plastic composites of ABS/PE (50/50 and 20/80) and ABS/GF (90/10) were fabricated from plastic components of waste LCDs and effects of PE composition on elongation of ABS/PE composites were investigated. Increased PE contents improved elongation of the composite from 2.4% to 13%, which was attributed to increased crystalline behavior of the ABS/PE composite afforded by ductile PE fraction: SEM fractographs showed some sign of plastic deformation of PE matrix before ductile fracture of the composites.

Effects of microplastics and salinity on food waste processing by black soldier fly (Hermetia illucens) larvae

  • Cho, Sam;Kim, Chul-Hwan;Kim, Min-Ji;Chung, Haegeun
    • Journal of Ecology and Environment
    • /
    • v.44 no.1
    • /
    • pp.45-53
    • /
    • 2020
  • Background: The black soldier fly (Hermetia illucens) is gaining attention as an efficient decomposer of food waste. However, recalcitrant compounds such as plastics mixed into food waste may have negative effects on its growth and survival. Moreover, its efficiency of food waste degradation may also be affected by plastics. In addition, salt (NaCl) can also be present in high concentrations, which also reduces the efficiency of H. illucens-mediated food waste treatment. In this study, we assessed the growth of black soldier fly larvae (BSFL) reared on food waste containing polyethylene (PE) and polystyrene (PS) and NaCl. The weight of BSFL was measured every 2-4 days. Survival and substrate reduction rates and pupation ratio were determined at the end of the experiment. Results: The total larval weight of Hermetia illucens reared on food waste containing PS was greater than that of the control on days 20 and 24. However, the survival rate was lower in the group treated with 5% PS, as was substrate reduction in all PS-treated groups. The weight of BSFL reared on food waste containing PE was lower than that of the control on day 6. PE in food waste did not affect the survival rate, but the pupation ratio increased and substrate consumption decreased with increasing PE concentrations. Regardless of the plastic type, the addition of NaCl resulted in decreased larval weight and pupation ratio. Conclusions: Larval growth of black soldier fly was inhibited not by plastics but by substrate salinity. Additional safety assessments of larvae reared on food waste containing impurities are needed to enable wider application of BSFL in vermicomposting.

Assessment of Applicability of Waste Vinyl Asphalt Concretes (폐비닐 아스팔트 콘크리트의 현장 적응성 연구)

  • Kim, Kwang-Woo;Li, Xiang-Fan;Lee, Soon-Jae;Kim, Sung-Un
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.111-114
    • /
    • 2001
  • This study is a fundamental research for recycling waste vinyl in asphalt concrete mixture for roadway pavement. The mixing method and proper content of waste polyethylene(PE) film were determined through preliminary mix design. This study used 2-type aggregate gradations and two-type waste PE films. The mixtures were applied for a test pavement on a rural road. Quality evaluation of the asphalt concrete confirmed that waste vinyl asphalt concrete was applicable to road pavement.

  • PDF

Dry Separation of PVC Film from Plastic Film Mixture by Using Air Table

  • Song, Young-Jun;Hiroki Yotsumoto;Lee, Gye-Seung
    • Resources Recycling
    • /
    • v.11 no.1
    • /
    • pp.37-42
    • /
    • 2002
  • This study was conducted in order to remove Poly vinyl chloride(PVC) from the waste plastic film mixture. The fittings of Air Table was modified to increase the separation efficiency of PVC and PE(poly ethylene). PE and PVC was successfully separated from PVC-PE film mixture with the yield of PE 90% or more and with his grade of 99% or more, using the improved Air Table. The details of the separation condition and results will be discussed in this paper. Dry separation, Waste plastic film, PVC, Air Table. The details of the separation condition and results will be discussed in this paper.

Study on Concrete Activation Reduction in a PET Cyclotron Vault

  • Bakhtiari, Mahdi;Oranj, Leila Mokhtari;Jung, Nam-Suk;Lee, Arim;Lee, Hee-Seock
    • Journal of Radiation Protection and Research
    • /
    • v.45 no.3
    • /
    • pp.130-141
    • /
    • 2020
  • Background: Concrete activation in cyclotron vaults is a major concern associated with their decommissioning because a considerable amount of activated concrete is generated by secondary neutrons during the operation of cyclotrons. Reducing the amount of activated concrete is important because of the high cost associated with radioactive waste management. This study aims to investigate the capability of the neutron absorbing materials to reduce concrete activation. Materials and Methods: The Particle and Heavy Ion Transport code System (PHITS) code was used to simulate a cyclotron target and room. The dimensions of the room were 457 cm (length), 470 cm (width), and 320 cm (height). Gd2O3, B4C, polyethylene (PE), and borated (5 wt% natB) PE with thicknesses of 5, 10, and 15 cm and their different combinations were selected as neutron absorbing materials. They were placed on the concrete walls to determine their effects on thermal neutrons. Thin B4C and Gd2O3 were placed between the concrete wall and additional PE shield separately to decrease the required thickness of the additional shield, and the thermal neutron flux at certain depths inside the concrete was calculated for each condition. Subsequently, the optimum combination was determined with respect to radioactive waste reduction, price, and availability, and the total reduced radioactive concrete waste was estimated. Results and Discussion: In the specific conditions considered in this study, the front wall with respect to the proton beam contained radioactive waste with a depth of up to 64 cm without any additional shield. A single layer of additional shield was inefficient because a thick shield was required. Two-layer combinations comprising 0.1- or 0.4-cm-thick B4C or Gd2O3 behind 10 cm-thick PE were studied to verify whether the appropriate thickness of the additional shield could be maintained. The number of transmitted thermal neutrons reduced to 30% in case of 0.1 cm-thick Gd2O3+10 cm-thick PE or 0.1 cm-thick B4C+10 cm-thick PE. Thus, the thickness of the radioactive waste in the front wall was reduced from 64 to 48 cm. Conclusion: Based on price and availability, the combination of the 10 cm-thick PE+0.1 cmthick B4C was reasonable and could effectively reduce the number of thermal neutrons. The amount of radioactive concrete waste was reduced by factor of two when considering whole concrete walls of the PET cyclotron vault.

Flame Retardancy and Foaming Properties of the Waste-Polyethylene(W-PE)/Waste-Ethylene vinyl acetate copolymer(W-EVA) Blend Foams (폐폴리에틸린/폐에틸렌 비닐아세테이트공중합체 블렌드 발포체의 난연 및 발포 특성에 관한 연구)

  • Moon, Sung-Chul;Jo, Byung-Wook;Choi, Jae-Kon
    • Elastomers and Composites
    • /
    • v.38 no.4
    • /
    • pp.316-325
    • /
    • 2003
  • The blends of waste-polyethylene (W-PE)/waste-ethylene vinyl acetate copolymer (W-EVA) with inorganic and phosphorous flame retardants (i.e., aluminium hydroxide, magnesium hydroxide, and so on) were prepared by melt mixing techniques at different compositions and foamed. The flame retardancy and foaming properties of the blends, limiting oxygen index (LOI), heat release rate (HRR), carbon monoxide yield (COY), total heat release (THR), effective heat of combustion (EHC), expandability and cell structure were investigated using cone calorimeter, SEM, LOI tester and polarizing microscope. When the composition ratios of the W-PE/W-EVA blends were 50/50 (w/w), and the ranges of the flame retardants contents were $175{\sim}220 phr$, we could obtain foams with the uniform and closed cell, high expandability (1900 % or more), high LOI, and low HRR values. These results depend on crosslinking and loaming conditions, a char formation and smoke suppressing effect. Aluminium hydroxide had more effect in the increase of LOI than magnesium hydroxide, while magnesium hydroxide considerably affected the decrease of HRR and COY.