• Title/Summary/Keyword: washing temperature

Search Result 506, Processing Time 0.029 seconds

Washing Efficiency of Drum Washing Machine Using Steam Jet System (스팀분사 방식을 사용한 스팀 드럼세탁의 세탁성능)

  • Jung, Sun-Young;Jang, Jeong-Dae;Park, Seok-Kyu;Jeong, Seong-Hae
    • Fashion & Textile Research Journal
    • /
    • v.8 no.1
    • /
    • pp.134-138
    • /
    • 2006
  • The washing efficiency of two types of washing machine- drum(drum washing) and drum using steam jet system(steam drum washing) was studied. The purpose of this paper is to clarify the performance of new steam drum washing. The relationship between washing temperature and washing efficiency(reflectance(%)) by soil removal, and that between washing temperature and electric energy consumption, Fabric damage evaluated by Danish wear method, Fabric shrinkage(%) during laundering were investigated, and compared with those in drum washing machine. Washing efficiency of steam drum washing according to washing temperature is better than that of drum washing. Electric energy consumption and fabric damage in steam drum washing are lower than those of drum washing. Fabric damage increased as washing temperature increased. Shrinkage of fabrics in steam drum washing and drum washing are about same. Therefore, we assumed that in the case of steam drum washing using steam jet system, washing efficiency remarkably increased, and fabric damage decreased, even with a lot of saving in given electric energy and water used.

A study on the washing efficiency with various washing conditions - Focus on detergent concentration and temperature - (인공오염포의 세탁조건에 따른 세척효율에 관한 연구 - 세제농도와 용수온도를 중심으로 -)

  • Choi, In-Ryu;Kim, Taemi
    • The Research Journal of the Costume Culture
    • /
    • v.22 no.3
    • /
    • pp.503-510
    • /
    • 2014
  • Nowdays, costumer's washing behavior were often times for remove to light-duty dirt. The purpose of this study is to provide the most effective washing conditions of detergent concentration and temperature conditions for help save energy and water resources required to the washing process. Washing conditions were as follows: 2 kinds of detergents and 4 types of artificially soiled fabrics were used. Detergent concentration was 0%, -10%, and -20% below the recommended conc. of manufacturer's standard. Temperature of bath was $20^{\circ}C$ and $40^{\circ}C$. The results of this study were as follows: First, washing performances of all kind of artificially soiled fabric improved as the temperature of bath at $40^{\circ}C$. Second, the test was conducted under the condition of decreasing respectively -10% and -20% below of the recommended concentration of manufacturer's standard detergent. The average of washing efficiency was not considerably affected by the reduction of 10% below of manufacturer's standard. Third, in case of the water temperature were $20^{\circ}C$, polyester/cotton blended fiber were higher degree of washing efficiency than cotton fiber.

Detergency of Woven Fabrics in Relation to the Detergents and Washing Temperature (세제의 종류 및 세척온도에 따른 각종 섬유직물의 세척성)

  • Cho Sung Kyo
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.3 no.1
    • /
    • pp.49-56
    • /
    • 1979
  • To investigate detergency of various woven fabrics in relation to the detergents and washing temperature. cotton, polyester/cotton (p/c), nylon, acetate, and polyester were soiled in aqueous artificial ($carbon-CCl_4$) soil. Each fabric was washed with soap, alkaline and neutral synthetic detergents at $30^{\circ}C$, $40^{\circ}C$ and $60^{\circ}C$ respectively. The results obtained may be summerized as follows; 1. In soap, ascension of temperature had the most important effect upon washing efficiency and the higher the temperature was, the higher the washing efficiency was showed in all fabrics. And in case of alkaline synthetic detergent, nylon and p/c fabrics were much more difficult to clean at higher temperature and also acetate and polyester had the best efficiency at $40^{\circ}C$. Detergency of neutral detergent was good but the effect of temperature in neutral detergent was less than in soap. 2. Washing efficiency of cotton was less than that of others. 3. The higher the temperature was, the higher the washing efficiency of cotton in all detergents, and the best was in soap. In p/c, detergency of neutral detergent was good but effect of ascension of temperature was lower than in soap. In nylon, washing efficiencies of alkaline synthetic detergent and neutral detergent were excellent at 30°C but detergency of soap at $60^{\circ}C$ was best. In case of acetate, detergency of all detergents was about the same at $30^{\circ}C$ but that of soap at $60^{\circ}C$ was best. In polyester at $30^{\circ}C$, efficiency of neutral detergent was excellent but that of soap was more excellent at higher temperature and the best detergency of alkaline synthetic detergent showed at $40^{\circ}C$. In general. the higher the temperature is, the higher the washing efficiency of soap is. But when synthetic fibers of nylon and polyester are washed with synthetic detergents, washing at lower temperature is advisable.

  • PDF

Effect of Ironing Temperature on the Removal of Poly Vinyl Alcohol Size (PVA 가호 직물의 다림질 온도가 탈호률에 미치는 영향)

  • 이정옥
    • Journal of the Korean Home Economics Association
    • /
    • v.18 no.4
    • /
    • pp.13-16
    • /
    • 1980
  • In cotton fabric sizing the domestic material is normally starch finds itself more frequent uses than the PVA size does. In this study we have examined the effects of ironing temperature and washing temperature on the removal of sized PVA by washing and have got following temperature on the removal of sized PVA by washing and have got following results: 1. the removal of PVA is related approximately to the reciprodal of the ironing temperature. 2. the higher the ironing temperature, the lower is the removal of PVA; and if the ironing temperature is higher than $140^{\circ}C$ the removal of PVA decreases abruptly even if the washing temperature were still high. 3. The most appropriate washing temperature should be at least $75^{\circ}C$when the ironing is carried out at 10$0^{\circ}C$ the same holds for $80^{\circ}C$to $120^{\circ}C$and $90^{\circ}C$to $120^{\circ}C$, respectively.

  • PDF

Washing Efficiency of Steam Jet Washing Process (스팀분사 세탁시스템의 세탁효율 분석)

  • Seo, Moon-Hwo;Lee, Ah-Jin;Jung, Soo-Hyun;Yang, Seung-Do;Kim, Hyung-Sup;Koh, Joon-Seok
    • Textile Coloration and Finishing
    • /
    • v.18 no.6 s.91
    • /
    • pp.69-79
    • /
    • 2006
  • The washing characteristics of steam jet heating process have been compared with other washing processes, such as low temperature process(standard process, below $40^{\circ}C$) and high temperature process(boiling process, up to $95^{\circ}C$) with the standard soil fabric, EPMA 105. Steam jet heating process showed almost the same washing efficiency as high maximum temperature process for pig's blood and wine. This result can be explained with the higher surface temperature of washing materials in steam jet process compared with direct boiling process. In terms of the energy and water consumption, the steam jet washing process showed significant savings compared with direct boiling type washing process.

Evaluation of Washing Efficiency based on Consumer's Washing Behavior Integral Approach for Improving Washing Machines (II)- (소비자의 세탁습관에 따른 세탁효율 평가 -국산세탁기의 경쟁력 강화를 위한 세탁 실태조사 및 실험연구(II)-)

  • 오경화;유혜경
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.21 no.2
    • /
    • pp.251-261
    • /
    • 1997
  • According to consumer's washing behavior, the washing efficiency of three different types of washing machines-pulsator, agitator, and drum was studied. Their detergency, rinsing efficiency, and the degree of fabric damage, tangle, and wrinkle were evaluated. The results showed that efficient washing capacity was different from the specified capacity of washing machine. Detergency and rinsing efficiency frere apparently decreased when more than 50% of capacity was loaded in washing machine of pulsator type, and 80% for agitator or drum types. They were also affected by detergent adding methods, and decreased in the order of water-detergent-washing load> washing load-detergent-water> washing load-water-detergent. Rinsing efficiency was significantly improved when the rinsing temperature was set above washing temperature. In addition, it was revealed that detergency, fabric damage, wrinkle, and tangle were highly correlated. The relationships between detergency and tangle were different for different types of washing machine. Positive relationships were found for agitator and drum types, whereas negative for pulsator type.

  • PDF

Washing Effects according to the Rinsing Conditions and the Characteristics of Soiled Fabrics (오염포의 특성과 헹구기 조건에 따른 세척 효과)

  • Jo, Won-Joo;Lee, Deug-Hee;Park, Eun-Jin;Lee, Jeong-Sook
    • Fashion & Textile Research Journal
    • /
    • v.13 no.3
    • /
    • pp.425-431
    • /
    • 2011
  • The purpose of this study was to investigate washing effects according to the rinsing conditions and the characteristics of soiled fabrics. In this study rinsing conditions including rinsing cycle, time, temperature, and bath ratio were examined. The foamability of rinsing bath was also examined. The quantity of LAS in the rinsing bath and extracts of test fabrics was analyzed after washing and rinsing, respectively. The results of these experiments were as follows: The washing effects of soiled fabrics were varied from the kinds of soils and rinsing conditions. The removal of soils from fabrics was increased by the first rinsing after washing effectively. The priorities of rinsing conditions were rinsing temperature> rinsing time > rinsing cycles> references. Foamability was result from residual LAS in rinsing bath and fabrics extracts after rinsing. The residual quantity of LAS was references > rinsing cycles> rinsing time> rinsing temperature, which shown rinsing temperature was the most efficient factor of the rinsing performance.

Study on the freshness change of Pacific Macheral, Hair Tail, and Alaska Pollack by the various storage conditions (고등어, 칼치, 명태의 선도변화에 관한 연구)

  • 김영희
    • Journal of the Korean Home Economics Association
    • /
    • v.19 no.1
    • /
    • pp.39-45
    • /
    • 1981
  • The fishes that are mostly used in our homes such as Pacific Mackeral, hair Tail and Alaska Pollack were devided into Freezing group, Refrigerating group and Room temperature group according to storage temperature. TVB-N, TMA-N, TMA-O and pp.H. were measured in natural state, after water washing and 3% NaCl-water washing. The results are as follows: 1. Regardless of the kinds of fishes, TVB-N in room temperature showed that rottenness first appeared after 5~8 hours in raw state, 6~12 hours in water washing, and 8~12 hours in 3% NaCl-water washing. 2. Regardless of freezing and refrigeration, Pacific Mackeral became rotten after 14 days in raw state, 14~17 days in water washing and 17 days in 3% NaCl water washing. Alaska Pollack and Hair Tail showed rottenness after 8 days in raw state, 11 days in water and 3% NaCl water washing. 3. Even in hot summer days, freshness could be preserved for 10 days if fishes were freezed ($-20^{\circ}C$) or refrigerated (4~$8^{\circ}C$) after bowel excluded, washed in NaCl water and enveloped in poly-ethylene bag.

  • PDF

Sustainability of Textile Products based on Washing Conditions: Focusing on the washing temperature and washing time (의류제품의 세탁조건과 지속가능성: 세탁온도와 세탁시간을 중심으로)

  • Yun, Changsang;Ryu, Hanna;Park, Sohyun
    • Human Ecology Research
    • /
    • v.56 no.5
    • /
    • pp.417-424
    • /
    • 2018
  • The use stage of a textile product impacts sustainability more significantly than other stages of the product's life cycle due to repeated washing and drying. This study determines efficient washing conditions, with high detergency, to reduce energy consumption from excessive washing and improve the washing process sustainability. Detergency was measured at various washing temperatures ($20^{\circ}C$, $40^{\circ}C$, and $60^{\circ}C$) and time (10 min, 20 min, and 30 min) using standardized soiled fabrics, i.e., 100% cotton, polyester/cotton (65%/35%), and 100% polyester woven fabric soiled with pigment/sebum, carbon black/mineral oil, soot/mineral oil, cocoa, blood, and red wine. Detergency at the washing condition of $20^{\circ}C$ and 30 min was higher than that at $40^{\circ}C$ and 10 min. In addition, detergency at the condition of $40^{\circ}C$ and 30 min was also higher than that at $60^{\circ}C$ and 10 minutes. This may be because a reduced washing effect at low washing temperatures was complemented by increased mechanical action over a long time. Further, washing temperature and time, with the same detergency, differed based on the type of fiber and soil. Also, the influence of a detergent on the detergency depends on the type of soil. The results suggest that energy and detergent have been consumed more than necessary in actual laundry. According to each type of fiber and soil, washing conditions designed to reduce the energy consumption of the washing process while maintaining the same detergency, were determined.

A Study on Non-detergent Course of Washing Machine (무세제 세탁코스에 관한 연구)

  • Kang, In-Sook;Jo, Seong-Jin;Kim, Young-Soo
    • Fashion & Textile Research Journal
    • /
    • v.5 no.5
    • /
    • pp.539-544
    • /
    • 2003
  • The purpose of this study is to research source of soil which is available for non-detergent course, and to develop optimum non-detergent course of washing machine for water soluble soil. The water soluble soil such as grape juice, soy bean paste and soy sauce were easily removed from the fabric but the oil soluble soils such as sesame oil and steak sauce were insurfficiently removed in washing solution without detergent. In the absence of detergent, amount of residual soils increased linearly with increasing number of soiling and washing. To search optimum conditions of washing for non-detergent course, the effect of temperature, washing time and washing method on detergency of soil in non-detergent washing solution was examined. The optimum washing temperature and washing time for non-detergent course were about $40^{\circ}C$, and 7 minutes, respectively. And in the non-detergent washing solution, midterm drain-resupply of water during washing process was good for removal of water soluble soil.