• Title/Summary/Keyword: warranty

Search Result 323, Processing Time 0.022 seconds

Estimating Failure Rate Using Warranty Claim Data with Delayed Report of Customers (고객의 지연보고를 고려한 보증수리내역자료에서의 고장률 추정)

  • Park, J.H.;Kim, Y.H.;Baek, J.H.;Lie, C.H.
    • IE interfaces
    • /
    • v.23 no.2
    • /
    • pp.176-181
    • /
    • 2010
  • Warranty claim data analysis is a useful tool for the manufacturer because it contains many useful informations regarding reliability of the product in the real-world environments. Because of the nature of uncertainty and the incompleteness of data, some bias patterns are observed on warranty claim rate known as 'spikes'. Two types of spikes are considered. One is due to manufacturing-related failures. The other is caused by customer's behavior. This paper proposes a model by considering two types of spikes. Warranty claim data is analyzed with the proposed model. To represent spikes observed on the early warranty period, we classify failures into manufacturing-related failures and usage-related failures. Uniform distribution is assumed for the time delayed to diagnose and report by customers. By reducing maximum value of the delayed time by customers, the proposed model characterizes customer's rush in the vicinity of the warranty expiration limit. Experimental results by using the real warranty claim data show that the proposed model is better than the existing one in respect to MSE(Mean Squared Error). Moreover it is expected to estimate the failure rate more realistically with proposed model because it considers the delayed time to diagnose and report by customers.

Failure modeling to predict warranty cost for individual markets (자동차 부품의 시장별 품질보증 비용 예측을 위한 고장모형 수립)

  • Lee, Ho-Taek
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.6
    • /
    • pp.1346-1352
    • /
    • 2009
  • Warranty cost of automobile parts varies depending on the parts failure rate in a warranty region of individual markets. Parts failure rate is significantly affected by usage-rate given that other stressors of individual markets are similar. Accordingly, warranty cost can be predicted by failure modeling which reflects usage-rate and using a stochastic process. In this paper, one-dimensional approach is used by applying accelerated failure time model on the assumption that the usage-rate is linear. Such model can explain changes in parts failure rate depending on the changes in usage-rate since it can be expressed as a function of usage-rate. Therefore, acquisition of usage-rate in a new market will automatically lead to estimate of failure rate even without warranty data and warranty cost of parts can be predicted through a renewal process in replacement cases. A case study using warranty data of two real markets is presented in the application part of this paper.

Fast Fuzzy Control of Warranty Claims System

  • Lee, Sang-Hyun;Cho, Sung-Eui;Moon, Kyung-Li
    • Journal of Information Processing Systems
    • /
    • v.6 no.2
    • /
    • pp.209-218
    • /
    • 2010
  • Classical warranty plans require crisp data obtained from strictly controlled reliability tests. However, in a real situation these requirements might not be fulfilled. In an extreme case, the warranty claims data come from users whose reports are expressed in a vague way. Furthermore, there are special situations where several characteristics are used together as criteria for judging the warranty eligibility of a failed product. This paper suggests a fast reasoning model based on fuzzy logic to handle multi-attribute and vague warranty data.

Warranty Policies for Non-Repairable Products with Phase-type Lifetime Distributions (수명분포가 Phase-Type인 수리불가능한 제품의 보증정책)

  • Kim, Ho Gyun
    • Journal of Korean Society for Quality Management
    • /
    • v.24 no.1
    • /
    • pp.1-9
    • /
    • 1996
  • Ritchken(1985) analyzes free replacement and pro-rata warranty policies for products receiving renewable warranies. He shows that for constant failure rates pro-rata warranty policies are more attractive to risk-averse manufacturers than shorter term free replacement policies that result in the same average warranty cost. This paper considers the case when product lifetimes distributions are of phase-type. When this is so, Ritchken's performance measures can be simplified considerably. It is found, that irrespective of the pattern of failure rates, pro-rata warranty policies are preferable to free replacement policies. But the warranty period of the equivalent free replacement policy decreases and then increases, as product reliability(the average time between failures) increases.

  • PDF

Warranty Cost Analysis for an Irrepairable Item (수리불가능한 품목의 보증비용분석)

  • Son, Eun-Il;Suh, Yang-Sung;Park, Young-Taek
    • Journal of Korean Society for Quality Management
    • /
    • v.22 no.1
    • /
    • pp.113-121
    • /
    • 1994
  • Present worth of warranty cost for an irrepairable item is derived under free-replacement, prorata and hybrid warranty policies, respectively. In this paper, it is assumed that the lifetime distribution is a Gamma, and warranty period is not renewed but maintained as promised at the selling time regardless of replacements due to warranty contract. A numerical example on the relationship between present worth of warranty cost and mean time to failure is included.

  • PDF

Various types of modelling for scale parameter in Weibull intensity function for two-dimensional warranty data

  • Baik, Jai-Wook;Jo, Jin-Nam
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.3
    • /
    • pp.555-560
    • /
    • 2010
  • One-dimensional approach to two-dimensional warranty data involves modeling us- age as a function of time. Iskandar (1993) suggests a simple linear model for usage. However, simple linear form of intensity function is of limited value to model the situa-tion where the intensity varies over time. In this study Weibull intensity is considered where the scale parameter is expressed in terms of different models. We will nd out how each parameter in the model a ects the warranty cost and which model gives a bigger number of failures within the two-dimensional warranty region.

Warranty cost anlaysis for multi-component systems with imperfect repair

  • Park, Minjae
    • International Journal of Reliability and Applications
    • /
    • v.15 no.1
    • /
    • pp.51-64
    • /
    • 2014
  • This paper develops a warranty cost model for complex systems with imperfect repair within a warranty period by addressing a practical case that the first inter-failure interval is longer than any other inter-failure intervals. The product is in its best condition before the first failure if repair is imperfect. After the imperfect repair, other inter-failure intervals which are explained by renewal processes, are stochastically smaller than the first inter-failure interval. Based on this idea, we suggest the failure-interval-failure-criterion model. In this model, we consider two random variables, X and Y where X represents failure intervals and Y represents failure criterion. We also obtain the distribution of the number of failures and conduct the warranty cost analysis. We investigate different types of warranty cost models, reliabilities and other measures for various systems including series-parallel configurations. Several numerical examples are discussed to demonstrate the applicability of the methodologies derived in the paper.

  • PDF

Cost analysis on renewable warranty policies subject to imperfect strategies using inter-failure intervals

  • Park, Minjae
    • International Journal of Reliability and Applications
    • /
    • v.14 no.1
    • /
    • pp.41-54
    • /
    • 2013
  • In this paper, cost analysis is conducted using inter-failure interval under renewable warranty subject to imperfect repair for multi-component system. One way to model the imperfect repair is to use the quasi-renewal process (Wang and Pham 1996). Two alternative quasi-renewal processes were suggested by Park and Pham (2010) using quasi-renewal process; first is an altered quasi-renewal process with random variable parameter and second is a mixed quasi-renewal process considering replacement service and repair service, simultaneously. In this study, we use the altered and mixed quasi-renewal processes and develop the warranty cost model to obtain the expected value of warranty cost and to help company make important decisions regarding the warranty policy. Numerical examples are used to demonstrate the applicability of the methodology derived in the paper.

  • PDF

Warranties for Products with Varying Usage Intensity

  • Kim, Jae Soong;Kim, Ji Sung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.24 no.64
    • /
    • pp.29-38
    • /
    • 2001
  • Most warranty studies assume that the usage intensity is the same for all buyers. However, in real life the usage intensity varies across the population of buyers. In the general case, one can divide the population into $\kappa$ categories. This has implications for manufacturers of products. Should a manufacturer produce one product and offer different warranties for the $\kappa$ groups or produce different products (one for each group) and offer the same warranty. A warranty cost analysis is needed to choose between these options. The analysis complicated by factors such as adverse selection , buyers attitude to risk and the price structure. In this paper we develop models to study the expected warranty cost for products with free replacement warranty with varying usage intensity. Numerical examples are presented.

  • PDF

A Case Study of Reliability Assessment of CMC in Hydraulic Clutch System with Field Warranty Data (보증수리자료를 활용한 유압클러치시스템의 클러치마스터실린더 신뢰성 분석 사례연구)

  • Lee, Sang Cheon;Park, Jong Hun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.36 no.3
    • /
    • pp.1-7
    • /
    • 2013
  • This paper is a case study of reliability assessment with field warranty data of Clutch Master Cylinder (CMC) in hydraulic clutch system. We estimate lifetime distribution using field warranty data which contain much useful information for understanding reliability of the system in the real-world environments. However, the estimated parameters are far from existing reference values, which seems to be caused right censored field warranty data. To modify the parameters, we use the information of the durability test which is performed to verify that the lifetime of the item meets the required level. After that, we can observe that the modified parameters are closer to the existing reference values. This case study shows a possible idea to supplement lack of right censored field warranty data and its applicability.