오늘날 많은 비용이 국가 의료보장체계의 유지를 위협하고 있다. 국가 질병 통제 및 방지 센터의 감사체계를 동반한 건강관리 역학성에 대한 연구에도 불구하고, 시간 한계, 표본 한계, 대상 질병 한계에 대한 제약이 여전히 존재하고 있다. 이러한 배경에서, 방대한 양의 전수 데이터를 활용하여, 많은 기술들이 건강의 선제적 예측이나 그 대상 질병을 확장하는 분야에 충분하게 적용되고 있다. 우리는 국민건강보험의 구조적 데이터와 소셜네트워크서비스의 비구조적 데이터를 활용하여 질병을 예측하는 모형을 설계하였다. 이 모형은 건강예보서비스를 제공함으로써, 국민건강을 증진시키고 사회적 혜택을 극대화할 수 있다. 또한, 빅데이터 분석에 근거하여, 건강보험비용의 갑작스러운 증가를 감소시키거나 적시적인 질병발생을 예측할 수도 있다. 관련된 의료 예측 사례를 살펴보았고, 제안된 모형의 검증을 위하여 시범과제를 통한 실험을 수행하였다.
Kim, Khan-Hyuk;Choi, Seong-Hwan;Cho, Kyung-Seok;Park, Young-Deuk;Choi, Kyu-Chul
한국우주과학회:학술대회논문집(한국우주과학회보)
/
한국우주과학회 2008년도 한국우주과학회보 제17권2호
/
pp.32.3-32.3
/
2008
Solar and Space Weather Research Group in Korea Astronomy & Space Science Institute (KASI) has been funded for "Construction of Korean Space Weather Prediction Center" from Korean government. It has started since 2007 February and is planed as a 5-year project. The goal of this project is to develop a space weather warning and prediction system by the next solar maximum. KASI installed a magnetometer at Mt. Bohyun, which is about 200 km south-east apart from KASI, in 2007 September. After finishing test observations of the magnetometer for the period from September 2007 to January 2008, KASI has operated the magnetometer to monitor geomagnetic field variations associated with space weather effect. Ground-based magnetometers are critical for understanding geomagnetic disturbances in the near-Earth space environment, which are caused by solar wind variations. In this talk, we introduce science topics to be done with the data from KASI magnetometer and also discuss how they are related to space weather phenomena.
Real-time flood prediction has an important role in significantly reducing potential damage caused by floods for urban residential areas located downstream of river basins. This paper presents an effective approach for flood forecasting based on the construction of a deep neural network (DNN) model. In addition, this research depends closely on the open-source software library, TensorFlow, which was developed by Google for machine and deep learning applications and research. The proposed model was applied to forecast the flowrate one, two, and three days in advance at the Son Tay hydrological station on the Red River, Vietnam. The input data of the model was a series of discharge data observed at five gauge stations on the Red River system, without requiring rainfall data, water levels and topographic characteristics. The research results indicate that the DNN model achieved a high performance for flood forecasting even though only a modest amount of data is required. When forecasting one and two days in advance, the Nash-Sutcliffe Efficiency (NSE) reached 0.993 and 0.938, respectively. The findings of this study suggest that the DNN model can be used to construct a real-time flood warning system on the Red River and for other river basins in Vietnam.
Fugitive dust, which is emitted in the ambient air without first passing through a stack or duct designed to control flow, is frequently generated by means of wind erosion from storage yards at Pohang Steel Wokrs. The size distribution of fugitive dust is mostly in the range of coarse particulate which is deposited as soon as emitted and less harm to human health; however $20\%$ of fugitive dust contains PM 10 known as one of most harmful airborne pollutant. Consequently, effective control and reduction of fugitive dust is strongly requested by the local society, but it is not easy so far because the generation and dispersion of fugitive dust highly depends on meteorological conditions, and it being occurred for irregularity. This research presented a fugitive dust control system for each meteorological condition by providing statistical prediction data obtained from a statistical analysis on the probability of generating the threshold velocity at which the fugitive dust begins to occur, and the frequency occurring by season and by time of the wind direction that can generate atmospheric pollution when the dispersed dust spreads to adjacent residential areas. The research also built a fugitive dust detection system which monitors the weather conditions surrounding storage yards and the changes in air quality on a real-time basis and issues a warning message by identifying a situation where the fugitive dust disperses outside the site boundary line so that appropriate measures can be taken on a timely basis. Furthermore, in respect to the spraying of water to prevent the generation of fugitive dust from the storage piles at the storage yard, an advanced statistical meteorological analysis on the weather conditions in Pohang area and a case study of fugitive dust dispersion toward outside of working field during $2002\∼2003$ were carried out in order to decide an optimal water-spraying time and the number of spraying that can prevent the origin of fugitive dust emission. The results of this research are expected to create extremely significant effects in improving surrounding environment through actual reduction of the fugitive dust produced from the storage yard of Pohang Steel Works by providing a high-tech warning system capable of constantly monitoring the leakage of fugitive dust and water-spray guidance that can maximize the water-spraying effects.
Coal and gas outburst is a serious dynamic disaster that occurs during coal mining and threatens the lives of coal miners. Currently, coal and gas outburst is commonly predicted using single indicator and its critical value. However, single indicator is unable to fully reflect all of the factors impacting outburst risk and has poor prediction accuracy. Therefore, a more accurate prediction method is necessary. In this work, we first analyzed on-site impacting factors and precursors of coal and gas outburst; then, we constructed a Fisher discriminant analysis (FDA) index system using the gas adsorption index of drilling cutting ${\Delta}h_2$, the drilling cutting weight S, the initial velocity of gas emission from borehole q, the thickness of soft coal h, and the maximum ratio of post-blasting gas emission peak to pre-blasting gas emission $B_{max}$; finally, we studied an FDA-based multiple indicators discriminant model of coal and gas outburst, and applied the discriminant model to predict coal and gas outburst. The results showed that the discriminant model has 100% prediction accuracy, even when some conventional indexes are lower than the warning criteria. The FDA method has a broad application prospects in coal and gas outburst prediction.
근년에 자주 나타나고 있는 봄철 과원의 서리피해는 관측된 기온이 비슷한 지역일지라도 개화 혹은 발아 단계의 과원에서 집중되고 있어 효율적인 상해 경보시스템 운영을 위해서는 발아기 혹은 만개기의 정확한 예측이 필요하다. 품종별 모수가 알려져 있는 포도 거봉, Campbell Early를 대상으로 생물계절모형을 적용하여 발아기를 추정하고 최저기온 예상치와 함께 늦서리 위험도 추정방법을 제시하였다. 이 방법은 발아 이후에 최저기온이 영하로 내려가면 상해가 발생한다고 가정하는데, 추정값의 오차범위를 고려한 발아일 이후 일 최저기온이 $-1.5^{\circ}C$ 이하로 떨어지면 경보(Warning), ${\pm}1.5^{\circ}C$ 사이면 주의보(Watch)를 발령한다. 이 방법을 2004년과 2005년 4월 경기 안성의 포도원에 적용하여 결과의 신뢰도를 확인하였다. 같은 방법으로 1971-2000평년의 기후조건에서 예상되는 안성지역의 포도 늦서리피해 위험지역을 30 m의 고해상도 전자기후도로 표현하였다. 안성시 전역을 30 m 격자점으로 표현하면 총 608,585개로 구성되는데, 평년의 포도 상해위험지역 판정결과 거봉은 1,059지역이, Campbell Early는 2,788지역이 주의지대로 예상된다.
최근 이상기후로 인한 급경사지 붕괴 위험이 증가되고 있으며, 급경사지 붕괴 위험의 사전 예측 및 경보 전파가 이루어지지 않아 인명과 재산 피해가 발생할 수 있다. 본 논문에서는 급경사지의 상태를 평가하기 위해 IoT 센서와 AI 기반 카메라를 융합한 급경사지 분석 시스템을 개발하였다. 시스템을 개발하기 위하여 급경사지 지반조건을 고려한 계측센서 하드웨어 및 펌웨어 설계, AI 기반 영상 분석 알고리즘 설계, 그리고 예·경보 솔루션 및 시스템 제작을 수행하였다. IoT 센서의 데이터와 AI 카메라 영상 분석을 통해 센서 데이터의 오차를 최소화하고, 데이터의 신뢰성을 향상시키고자 하였다. 또한 실제 급경사지에 적용하여 정확도(신뢰도)를 평가하였다. 그 결과, 센서 계측 오류는 0.1° 이내로 유지되었으며 계측 데이터의 전송률은 95%이상이었다. AI 기반의 영상 분석 시스템은 야간에도 부분 인식률 99%의 높은 성능을 나타내었다. 본 연구결과는 다양한 사회간접자본(SOC) 시설의 급경사지 상태 분석 및 스마트 유지관리 분야에도 적용할 수 있을 것으로 판단된다.
생물 조기 경보 시스템은 물속 생명체의 행동을 관찰하여 독성을 감지한다. 이 시스템은 분류기를 물의 독성의 유무와 정도를 판단하기 위해 사용한다. 이 분류기의 성능을 높이기 위해 적용할 수 있는 방법 중에 부스팅 알고리즘이 있다. 부스팅은 기본 분류기로는 예측 정확도가 낮았던 분류하기 어려운 사건에 집중할 수 있도록 다음 번 데이터에 해당 훈련 사건(event)들이 뽑힐 확률을 높여준다. 횟수가 진행될수록 분류기가 어려운 사건들을 집중적으로 고려하게 된다. 그 결과 분류하기 어려웠던 사건에 대한 예측 성능은 좋아지지만, 비교적 쉬운 훈련 사건들의 정보는 버려지는 단점이 있다. 본 논문에서는 이 같은 단점을 보완하기 위해 분류기에 확장된 데이터 표현을 위한 점진적 학습법의 적용을 제안한다. 확장된 데이터 표현의 가중치 변수를 사용하면 약하게 분류되는 사건 뿐 아니라 쉽게 분류되는 사건의 정보까지도 사용하여 분류기의 예측 정확도를 높일 수 있게 된다. 새로 적용된 알고리즘과 기존의 중요도 변수를 사용하지 않는 learn++를 비교하여 성능이 향상됨을 검증하였다.
We have developed solar and space weather monitoring system for space weather users since 2007 as a project named 'Construction of Korea Space Weather Prediction Center'. In this presentation we will introduce space weather monitoring system for Geostationary Satellites and Polar Routes. These were developed for satisfying demands of space weather user groups. 'Space Weather Monitoring System for Geostationary Satellites' displays integrated space weather information on geostationary orbit such as magnetopause location, nowcast and forecast of space weather, cosmic ray count rate, number of meteors and x-ray solar flux. This system is developed for space weather customers who are managing satellite systems or using satellite information. In addition, this system provides space weather warning by SMS in which short message is delivered to users' cell phones when space weather parameters reach a critical value. 'Space Weather Monitoring System for Polar Routes' was developed for the commercial airline companies operating polar routes. This provides D-region and polar cap absorption map, aurora and radiation particle distribution, nowcast and forecast of space weather, proton flux, Kp index and so on.
The purpose of this work is to predict the systolic blood pressure (BP) during exercise from pulse transit time (PTT) for warning of possible danger. PTT was calculated as the time between R-peak of ECG and the peak of differential photoplethysmograph (PPG). For the PTT-BP model, we used regress equations from previous studies and 3 kinds of new models combining linear and nonlinear regress equation. The model parameters were estimated with the data measured under low to middle intensity exercise, and then was tested with the data measured under high intensity exercise. Predicted BP values after high intensity exercise were compared with those measured by cuff-type sphygmomanometer. The results showed that the error between measured and predicted values were acceptable for the monitoring BP. We tested PTT-BP models 1 month after the identification without further calibration. Models could predict the BP and the errors between measured and predicted BP were about 5mmHg. The suggested system is expected to be helpful in recognizing any danger during exercise.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.