• Title/Summary/Keyword: wall-frame

Search Result 551, Processing Time 0.024 seconds

Experimental Study of Strength and Ductility on Masonry Wall Frame and Shear Wall Frame Subjected to Cyclic Lateral Loading (반복-횡력을 받는 조적벽 골조와 전단벽 골조의 내력 및 연성에 관한 실험적 연구)

  • Lee, Ho;Byeon, Sang-Min;Jung, Hwan-Mok;Lee, Taick-Oun
    • Journal of Korean Association for Spatial Structures
    • /
    • v.13 no.2
    • /
    • pp.83-91
    • /
    • 2013
  • The core aim of this dissertation is to empirically scrutinize a strength characteristic of beam-column frame subjected to the cyclic lateral load, a beam-column frame of un-reinforced masonry wall, and a shear wall frame. First and foremost, I embark upon making three prototypes vis-$\grave{a}$-vis this research. By conducting this process, I touch on an analysis of cyclic behavior and a damage characteristic of the beam-column frame, the beam-column frame of un-reinforced masonry wall, and the shear wall frame. What is more, through the previous procedure, the next part delves into the exact stress transfer path and the destructive mechanism to examine how much and how strong the beam-column frame of un-reinforced Masonry Wall does have a resistance capacity against earthquake in all the architecture constructed by the above-mentioned frame, as well as school buildings. In addition to the three prototypes, two more experimental models, a beam-column frame and shear wall frame, are used to compare with the beam-column frame of un-reinforced masonry wall. Lastly, the dissertation will suggest some solutions to improve the resistance capacity against earthquake regarding all constructions built with non bearing wall following having examining precisely all the analysis with regard to not only behavior properties and the damage mechanism of the beam-column frame and the beam-column frame of un-reinforced Masonry Wall but also the resistance capacity against earthquake of non bearing wall and school buildings.

Experimental study on RC frame structures strengthened by externally-anchored PC wall panels

  • Choi, Seung-Ho;Hwang, Jin-Ha;Lee, Deuck Hang;Kim, Kang Su;Zhang, Dichuan;Kim, Jong Ryeol
    • Computers and Concrete
    • /
    • v.22 no.4
    • /
    • pp.383-393
    • /
    • 2018
  • Infill wall strengthening method has been widely used for seismic strengthening of deteriorated reinforced concrete (RC) frame structures with non-seismic details. Although such infill wall method can ensure sufficient lateral strengths of RC frame structures deteriorated in seismic performances with a low constructional cost, it generally requires quite cumbersome construction works due to its complex connection details between an infill wall and existing RC frame. In this study, an advanced seismic strengthening method using externally-anchored precast wall panels (EPCW) was developed to overcome the disadvantage inherent in the existing infill wall strengthening method. A total of four RC frame specimens were carefully designed and fabricated. Cyclic loading tests were then conducted to examine seismic performances of RC frame specimens strengthened using the EPCW method. Two specimens were fully strengthened using stocky precast wall panels with different connection details while one specimen was strengthened only in column perimeter with slender precast wall panels. Test results showed that the strength, stiffness, and energy dissipation capacity of RC frame specimens strengthened by EPCWs were improved compared to control frame specimens without strengthening.

Hysteretic performance of a novel composite wall panel consisted of a light-steel frame and aerated concrete blocks

  • Wang, Xiaoping;Li, Fan;Wan, Liangdong;Li, Tao
    • Steel and Composite Structures
    • /
    • v.41 no.6
    • /
    • pp.861-871
    • /
    • 2021
  • This study aims at investigating the hysteretic performance of a novel composite wall panel fabricated by infilling aerated concrete blocks into a novel light-steel frame used for low-rise residential buildings. The novel light-steel frame is consisted of two thin-wall rectangular hollow section columns and a truss-beam assembled using patented U-shape connectors. Two bare light-steel frames and two composite wall panels have been tested to failure under horizontal cyclic loading. Hysteretic curves, lateral resistance and stiffness of four specimens have been investigated and analyzed. Based on the testing results, it is found that the masonry infill can significantly increase the lateral resistance and stiffness of the novel light-steel frame, about 2.3~3 and 21.2~31.5 times, respectively. Failure mode of the light-steel frame is local yielding of the column. For the composite wall panel, firstly, masonry infill is crushed, subsequently, local yielding may occur at the column if loading continues. Hysteretic curve of the composite wall panel obtained is not plump, implying a poor energy dissipation capacity. However, the light-steel frame of the composite wall panel can dissipate more energy after the masonry infill is crushed. Therefore, the composite wall panel has a much higher energy dissipation capacity compared to the bare light-steel frame.

Shear Lag Phenomenon in Shear/Core Wall of Wall-Frame Structures (골조-전단벽 구조에서 전단/코어벽의 Shear Lag 현상)

  • 이은진;이강건;이리형
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.215-222
    • /
    • 2001
  • This study investigates the shear lag phenomenon existing in the shear wall of the wall-frame structure. Elastic analysis of such structures is carried out using a 3-D frame analysis program. The structural parameters governing the shear lag phenomenon are wall height and thickness. The analysis shows that the overturning moment due to external lateral load is resisted by both of the shear/core wall and the external frame. Severe unstable stresses are identified in height ratio of about 0.7 The taller or thinner wall shows the smaller shear lag phenomenon.

  • PDF

Development of Efficient Seismic Analysis Model using 2D T-Shape Rigid-body for Wall-Frame Structures with a Central Core (이차원 T형강체를 이용한 중심코어를 가진 전단벽-골조 구조물의 효율적인 지진해석모델 개발)

  • Park, Yong-Koo;Lee, Dong-Guen;Kim, Hyun-Su
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.1
    • /
    • pp.9-17
    • /
    • 2013
  • In this study, an efficient analytical model for the dynamic analysis of tall buildings with a shear wall-frame structural system has been proposed. A shear wall-frame structural system usually consists of a core wall showing flexural behavior and a frame presenting shear behavior. Therefore, the deformed shape of the shear wall-frame structural system is shown by the combination of flexural mode and shear mode. These characteristics should be considered when an efficient analytical model is developed. To this end, the effect of shear wall and frame on the dynamic behavior of a tall building with a dual system has been separately investigated. In this study, the structural characteristics of a separated individual shear wall model and the frame model without shear wall has been evaluated. In order to consider the effect of the shear wall in the frame model without shear wall, a rigid body was used instead of the shear wall. Each equivalent model for the separated shear wall part and frame part has been independently developed and two equivalent models were then combined to create an efficient analytical model for tall buildings with a shear wall-frame structural system. In order to verify the efficiency and accuracy of the proposed method, time history analyses of tall buildings with a shear wall-frame system were performed. Based on analytical results, it has been confirmed that the proposed method can provide accurate results, requiring significantly reduced computational time and memory.

Seismic deformation demands on rectangular structural walls in frame-wall systems

  • Kazaz, Ilker
    • Earthquakes and Structures
    • /
    • v.10 no.2
    • /
    • pp.329-350
    • /
    • 2016
  • A parametric study was conducted to investigate the seismic deformation demands in terms of drift ratio, plastic base rotation and compression strain on rectangular wall members in frame-wall systems. The wall index defined as ratio of total wall area to the floor plan area was kept as variable in frame-wall models and its relation with the seismic demand at the base of the wall was investigated. The wall indexes of analyzed models are in the range of 0.2-2%. 4, 8 and 12-story frame-wall models were created. The seismic behavior of frame-wall models were calculated using nonlinear time-history analysis and design spectrum matched ground motion set. Analyses results revealed that the increased wall index led to significant reduction in the top and inter-story displacement demands especially for 4-story models. The calculated average inter-story drift decreased from 1.5% to 0.5% for 4-story models. The average drift ratio in 8- and 12-story models has changed from approximately 1.5% to 0.75%. As the wall index increases, the dispersion in the calculated drifts due to ground motion variability decreased considerably. This is mainly due to increase in the lateral stiffness of models that leads their fundamental period of vibration to fall into zone of the response spectra that has smaller dispersion for scaled ground motion data set. When walls were assessed according to plastic rotation limits defined in ASCE/SEI 41, it was seen that the walls in frame-wall systems with low wall index in the range of 0.2-0.6% could seldom survive the design earthquake without major damage. Concrete compressive strains calculated in all frame-wall structures were much higher than the limit allowed for design, ${\varepsilon}_c$=0.0035, so confinement is required at the boundaries. For rectangular walls above the wall index value of 1.0% nearly all walls assure at least life safety (LS) performance criteria. It is proposed that in the design of dual systems where frames and walls are connected by link and transverse beams, the minimum value of wall index should be greater than 0.6%, in order to prevent excessive damage to wall members.

Improvement and Evaluation of Seismic Resistant Performance of Reinforced Concrete Infilled Masonry Frame with Restraining Factor of Frame (철근콘크리트 프레임면내 조적벽체의 골조 구속에 따른 내진성능 평가 및 개선)

  • Shin, Jong-Hack;Ha, Gee-Joo;Lee, Hee-Jong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.3
    • /
    • pp.131-139
    • /
    • 2001
  • Experimental programs were accomplished to improve and evaluate the structural performance of RC frame structures with masonry infilled wall, such as the hysteretic behavior, the maximum horizontal strength, crack propagation, and ductility etc. Test variables are restraining factors of frame, with or without masonry infilled wall, and masonry method. Six reinforced concrete rigid frame and masonry infilled wall were tested and constructed in one-third scale size under vertical and cyclic loads simultaneously. Based on the test results, the following conclusions can be made. For masonry infilled wall with restraining factors of frame(IFWB-1~3), cumulated energy dissipation capacities were increased by 1.35~1.60 times in comparision with that of masonry infilled wall(IFB-1) at final stage of testing. For masonry infilled wall with restraining factors of frame, maximum horizontal capacities were increased by 1.91~2.24 times in comparision with that of rigid frame.

  • PDF

A study on the seismic performance of reinforced concrete frames with dry stack masonry wall using concrete block

  • Joong-Won Lee;Kwang-Ho Choi
    • Earthquakes and Structures
    • /
    • v.24 no.3
    • /
    • pp.205-215
    • /
    • 2023
  • Currently, many studies are underway at home and abroad on the seismic performance evaluation and dry construction method of the masonry structure. In this study, a dry stack masonry wall system without mortar using concrete blocks is proposed, and investigate the seismic performance of dry filling wall frames through experimental studies. First, two types of standard blocks and key blocks were designed to assemble dry walls of concrete blocks. And then, three types of experiments were manufactured, including pure frame, 1/2 height filling wall frame, and full height filling wall frame, and cyclic load experiments in horizontal direction were performed to analyze crack patterns, load displacement history, rebar deformation yield, effective stiffness change, displacement ductility, and energy dissipation capacity. According to the experimental results, the full height filling wall frame had the largest horizontal resistance against the earthquake load and showed a high energy dissipation capacity. However, the 1/2 height filling wall frame requires attention because the filling wall constrains the effective span of the column, limiting the horizontal displacement of the frame. In addition, the concrete block was firmly assembled in the vertical direction of the wall as the horizontal movement between the concrete blocks was allowed within installation margin, and there was no dropping of the assembled concrete block.

Effect of creep and shrinkage in a class of composite frame - shear wall systems

  • Sharma, R.K.;Maru, Savita;Nagpal, A.K.
    • Steel and Composite Structures
    • /
    • v.3 no.5
    • /
    • pp.333-348
    • /
    • 2003
  • The behaviour of composite frame - shear wall systems with regard to creep and shrinkage with high beam stiffness has been largely unattended until recently since no procedure has been available. Recently an accurate procedure, termed the Consistent Procedure (CP), has been developed which is applicable for low as well as for high beam stiffness. In this paper, CP is adapted for a class of composite frame - shear wall systems comprising of steel columns and R.C. shear walls. Studies are reported for the composite systems with high as well as low beam stiffness. It is shown that considerable load redistribution occurs between the R.C. shear wall and the steel columns and additional moments occur in beams. The magnitude of the load redistribution and the additional moment in the beams depend on the stiffness of the beams. It is also shown that the effect of creep and shrinkage are greater for the composite frame - shear wall system than for the equivalent R.C. frame - shear wall system.

Evaluation on Seismic Performance of Existing Frame retrofitted with RC CIP Infill Walls (기존 골조의 내진성능 향상을 위한 철근콘크리트 현장타설 끼움벽의 보강성능 평가)

  • Kim, Sun-Woo;Yun, Hyun-Do;Kim, Yun-Su;Ji, Sang-Kyu
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.53-56
    • /
    • 2008
  • A reinforced concrete (RC) cast-in-place (CIP) infill wall retrofitting method may provide an improved seismic performance and economical efficiency for the non-ductile rahmen structures. In this study, four one story-one bay non-ductile frame were constructed and retrofitted with CIP infill wall to evaluate seismic performance of CIP infill wall-frame. From the test results, infill wall-frame exhibited a marked increase in shear strength compared to non-ductile RC frame specimen. But the ductility and story-drift at maximum load were decreased when shear strength of infill wall larger than that of existing RC frame. Therefore, it is confirmed that adequate reinforcement detail is required to assure sufficient seismic performance.

  • PDF