• Title/Summary/Keyword: wall to wall

Search Result 15,009, Processing Time 0.043 seconds

Repair of Recurrent Pectus Excavatum with a Huge Chest Wall Defect in a Patient with a Previous Ravitch and Pectus Bar Repair: A Case Report

  • Rim, Gongmin;Park, Hyung Joo
    • Journal of Chest Surgery
    • /
    • v.55 no.3
    • /
    • pp.246-249
    • /
    • 2022
  • Recurrent pectus excavatum (PE) after a Ravitch operation is not uncommon. Extensive costal cartilage resection from the previous Ravitch procedure can lead to an irregular, unstable chest wall depressions with a varying degree of deformity. The optimal approach to cover the chest wall defect and remodel the deformity, remains unknown. We report the case of a 27-year-old woman seeking surgery for the third time for recurrent PE. The patient presented with 2-time recurrent pectus excavatum following a failed Ravitch procedure and subsequent pectus bar repair. The entire chest wall reconstruction and remodeling entailed covering the chest wall defect with 2 titanium plates across both sides of the rib cage, and lifting and fixing the depressed chest wall with 2 parallel pectus bars.

Analgesis of Clearly Reinforced Soil Wall Behavior by Model Test (모형시험에 의한 점성토 보강토벽의 거동분석)

  • 이용안;이재열;김유성
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.11c
    • /
    • pp.85-94
    • /
    • 1999
  • Reinforced Soil Wall has several merits comparing with conventional retaining wall. The conventional method has the limit of wall height, ununiform settlement of the foundation ground, quality assurance of the embankment body, shortening of construction period, economical construction and so on. Basis of previous mentioned things reinforced soil wall is the substitutional method of conventional retaining wall and its necessity is continuously increasing. The embanking material used in reinforced soil wall is generally limited such as a good quality sandy soil, and in many case constructors have to transfer such a good embanking material from far away to construction site. As a result, they would pressed by time and economy. If poor soils could be used embanking material, for example, clayey soil produced in-situ by cutting and excavation, the economical merit of reinforced soil wall would be increased more and more. Likewise, a lot of study about laboratory experimental behavior of reinforced soil wall using a good quality soil is being performed, but is rare study about clayey soil containing much volume of fine particle relatively in korea. In this study, the authors investigated behavior of the geosynthetic reinforced and unreinforced soil walls using clayey soil as embanking material in view of horizontal movement of walls, bearing capacity and reinforcement stress.

  • PDF

Active Earth Pressure Acting on the Cylindrical Retaining Wall of a Shaft (원형수직구의 흙막이 벽체에 작용하는 주동토압)

  • Chun, Byungsik;Shin, Youngwan
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.4
    • /
    • pp.15-24
    • /
    • 2006
  • It is well known that earth pressure on the cylindrical open caisson and cylindrical retaining wall of a shaft is less than that at-rest and in plane strain condition because of the horizontal and vertical arching effects due to wall displacement and stress relief. In order to examine the earth pressure distribution of a cylindrical wall, model tests were performed in dry sand for the care of constant wall displacement with depth. Model test apparatus which can control wall displacement, wall friction, and wall shape ratio was developed. The effects of various factors that influence earth pressure acting on the cylindrical retaining wall of a shaft were investigated.

  • PDF

Numerical Study on the Effect of the Wall Curvature on the Behaviors of the Impinging Sprays (충돌분무의 거동에 미치는 벽면곡률의 영향에 대한 수치해석 연구)

  • 고권현;유홍선
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.3
    • /
    • pp.59-65
    • /
    • 2004
  • In this paper a numerical study was performed for the effect of the wall curvature on the behaviors of fuel sprays impinging on the concave Surface. Actually, in the real diesel engines, a piston head has a curved shape for the purpose of the controlling the movement of fuel droplets and the mixture formation. For past decades, although many experimental and numerical works had been performed on the spray/wall impingement phenomena, the curvature effect of impinged wall was rarely investigated. The wall curvature affects on the behaviors of the secondary droplets generated by impingement and the concave wall obstructs the droplets to advance from the impinging site to outward. In present study, the simulation code was validated for the flat surface case and three cases of the different curvature were calculated and compared with the flat surface case for several parameters, such as the spray radius, the spray height and the position of vortex center of gas phase. The simulation results showed that the radial advance of the wall spray and the vortex is decreased with increasing the curvature. It was concluded that the curvature of the impinged wall significantly affects the behaviors of both the gas-phase and the droplet-phase.

Effects of Altering Foot Position on Quadriceps Femoris Activation during Wall Squat Exercises

  • Qiao, Yong-Jun;Kim, Kyu-Ryeong;Kim, Myoung-Kwon
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.16 no.1
    • /
    • pp.23-31
    • /
    • 2021
  • PURPOSE: This study was conducted to identify the effects of altering foot position on quadriceps femoris including vastus medialis obliques (VMO), vastus lateralis (VL) and rectus femoris (RF) activation during wall squat exercises. METHODS: All subjects (n = 15) were selected and randomly performed three kinds of wall squats: 1) GWS (General Wall Squat), 2) WSS1/4 (Wall Squat Short 1/4), and 3) WSS1/2 (Wall Squat Short 1/2). Each subject completed all three kinds of wall squatting exercises at three different times and recorded the muscle activity data of vastus medialis obliques, vastus lateralis and rectus femoris. RESULTS: Compared with GWS exercise, VMO and RF muscle activity significantly increased under WSS1/2 exercise (p < .05), while only RF muscle activity significantly increased under WSS1/4 exercise (p < .05). CONCLUSION: The results of the present study indicate that moving the foot toward the wall during wall squats has a positive effect on quadriceps activation. The exercise of wall squat short can not only be used as the lower limb muscle strengthening training for normal people, but also as the recovery training for patellofemoral pain syndrome patients in the rehabilitation stage. Besides, Anterior cruciate ligament patients can also try this exercise according to the advice of doctors and therapists.

A Development of performance criteria tool for lightweight dry wall (건식경량벽체 요구성능 도출 도구 개발에 관한 연구)

  • Ji, Suk-won;Yoon, Sang-chun;Choi, Soo-kyung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.215-216
    • /
    • 2019
  • The following conclusions were reached through the research on the development of the required performance extraction tools for the application and utilization of various construction methods of lightweght dry wall. 1) Performance required for walls of apartment buildings can be divided into safety, habitation, durability and productivity. Among these, horizontal load resistance, shock resistance, anti-seismic performance, insulation, and acoustic characteristics are the main performance that correspond to dry walls. In addition, safety related to toxic gases and contaminants are required according to recent eco-friendly requirements. 2) To select a wall according to the required performance of an inner wall applied to an apartment, a map tool in the form of 2D matrices was constructed to enable the required performance to be applied, indicating that the wall location and wall material and its differentiating according to the old method.

  • PDF

A Planting Study on the Development of Eco-friendly Reinforced Earth-Retaining Wall Using Planting Green Net (환경친화형 그린넷 보강토 옹벽 개발을 위한 식생시험 연구)

  • Chung, Dae-Seouk
    • Journal of Environmental Science International
    • /
    • v.16 no.9
    • /
    • pp.1099-1102
    • /
    • 2007
  • This paper presents eco-friendly planting method to overcome the problems of existing concrete retaining wall and gabion retaining wall, respectively, based on the examination on existing concrete and gabion retaining wall. Prior to doing this, proper design method was provided through pull out test. Planting method using gabion metal net and L shape green net retaining wall were compared and analyzed. According to this study, it is confirmed that reduction of construction period and economical profit in construction can be achieved by both manufacturing at the factory and self procurement at the job site as well as the use of metal net, which is applied as a substitution of existing strengthening material. For the effect of planting method, the use of L shape green net retaining wall shows superiority to environment-friendly gabion retaining wall in its ability to rootage and germination of the grass. The L shape green net retaining wall had excellent performance in helping rootage of grass and prevention of soil leakage, and even if raining period, remarkable damage of planting mat does not occur when planting mat is applied.

Performance Evaluation of Wall Blower Nozzle using Erosion Analysis (침식 해석을 이용한 월 블로워 노즐의 성능 예측)

  • Paek, Jae Ho;Jang, llkwang;Jang, Yong Hoon
    • Tribology and Lubricants
    • /
    • v.34 no.5
    • /
    • pp.175-182
    • /
    • 2018
  • Accumulation of coal ash at the boiler wall reduces combustion and fuel efficiency. The design of a wall blower is important to effectively remove coal ash. We present numerical results for the removal of coal ash from boiler walls of domestic coal-fired power plants, associated with the computational fluid dynamics for the flow from spray nozzle to boiler wall. The numerical model simulates an erosion process in which the multiphase fluid comprising saturated vapor and fluid water is sprayed from the nozzle, and the water particles impact the boiler wall. We adopt the Finnie erosion model for water particles. We obtain the erosion rate density as a function of nozzle angle and its injection angle. As excessive coal ash removal usually induces damage to the boiler wall, the removal operation typically focuses on a large area with uniform depth rather than the maximum removal of coal ash at a specific location. In order to estimate the removal performance of the wall blower nozzle considering several functionality and reliability factors, we evaluate the optimal injection and nozzle angles with respect to the biggest cumulative and highest erosion rates, as well as the widest range and lowest standard deviation of the erosion rate distribution.

Influence of wall flexibility on dynamic response of cantilever retaining walls

  • Cakir, Tufan
    • Structural Engineering and Mechanics
    • /
    • v.49 no.1
    • /
    • pp.1-22
    • /
    • 2014
  • A seismic evaluation is made of the response to horizontal ground shaking of cantilever retaining walls using the finite element model in three dimensional space whose verification is provided analytically through the modal analysis technique in case of the assumptions of fixed base, complete bonding behavior at the wall-soil interface, and elastic behavior of soil. Thanks to the versatility of the finite element model, the retained medium is then idealized as a uniform, elastoplastic stratum of constant thickness and semi-infinite extent in the horizontal direction considering debonding behavior at the interface in order to perform comprehensive soil-structure interaction (SSI) analyses. The parameters varied include the flexibility of the wall, the properties of the soil medium, and the characteristics of the ground motion. Two different finite element models corresponding with flexible and rigid wall configurations are studied for six different soil types under the effects of two different ground motions. The response quantities examined incorporate the lateral displacements of the wall relative to the moving base and the stresses in the wall in all directions. The results show that the wall flexibility and soil properties have a major effect on seismic behavior of cantilever retaining walls and should be considered in design criteria of cantilever walls. Furthermore, the results of the numerical investigations are expected to be useful for the better understanding and the optimization of seismic design of this particular type of retaining structure.

Turbulent plane Couette-Poiseuille flow over a 2-D rod-roughened wall (2차원 표면조도가 있는 난류 평면 Couette-Poiseuille 유동에 대한 직접수치모사)

  • Kim, Jeong Hyun;Lee, Young Mo;Lee, Jae Hwa
    • Journal of the Korean Society of Visualization
    • /
    • v.17 no.3
    • /
    • pp.12-18
    • /
    • 2019
  • Direct numerical simulation of a fully developed turbulent plane Couette-Poiseuille flow with a two-dimensional (2-D) rod-roughened wall is performed to investigate the impacts of the surface roughness. It is shown that the logarithmic region in the mean velocity profile over the rough wall Couette-Poiseuille flow is significantly shortened by the surface roughness compared to that over a turbulent Couette-Poiseuille flow with smooth wall. The Reynolds shear stress over the rough wall Couette-Poiseuille flow is decreased compared to that for a smooth case in the outer layer. These results are attributed to weakened turbulence activity or roll-cell mode over the rough wall Couette-Poiseuille flow near the channel centerline due to suppressed development of u'-structure on the top wall, as documented through spanwise energy spectra of the streamwise velocity fluctuations. Inspection of congregation motion near the bottom wall and time evolution of u'-structure reveal weakened co-supporting cycle for the rough wall case.