• Title/Summary/Keyword: wall shear stress

Search Result 460, Processing Time 0.023 seconds

A parametric study on buckling loads and tension field stress patterns of steel plate shear walls concerning buckling modes

  • Memarzadeh, P.;Azhari, M.;Saadatpour, M.M.
    • Steel and Composite Structures
    • /
    • v.10 no.1
    • /
    • pp.87-108
    • /
    • 2010
  • A Steel Plate Shear Wall (SPSW) is a lateral load resisting system consisting of an infill plate located within a frame. When buckling occurs in the infill plate of a SPSW, a diagonal tension field is formed through the plate. The study of the tension field behavior regarding the distribution and orientation patterns of principal stresses can be useful, for instance to modify the basic strip model to predict the behavior of SPSW more accurately. This paper investigates the influence of torsional and out-of-plane flexural rigidities of boundary members (i.e. beams and columns) on the buckling coefficient as well as on the distribution and orientation patterns of principal stresses associated with the buckling modes. The linear buckling equations in the sense of von-Karman have been solved in conjunction with various boundary conditions, by using the Ritz method. Also, in this research the effects of symmetric and anti-symmetric buckling modes and complete anchoring of the tension field due to lacking of in-plane bending of the beams as well as the aspect ratio of plate on the behavior of tension field and buckling coefficient have been studied.

THE RELATIVE IMPORTANCE OF NON-NEWTONIAN CHARACTERISTICS OF BLOOD IN THE HEMODYNAMICS OF THE CAROTID BIFURCATION (경동맥 혈류유동에서의 혈액의 비뉴우토니안 특성의 상대적 중요성 해석)

  • Lee, S.W.;Steinman, D.A.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.181-185
    • /
    • 2008
  • In this study, we attempted to quantify the relative importance of assumptions regarding blood rheology. Three patient-specific carotid bifurcation geometries and time-varying flow rates were obtained using magnetic resonance imaging. For each subject, CFD simulations were carried out assuming two different non-Newtonian rheology models Carreau and Ballyk models) and rescaled Newtonian viscosities based on characteristic shear rates to account for the shear-thinning property of blood. The sensitivity of WSS and oscillatory shear index (OSI) were contextualized with respect to the reproducibility of the reconstructed geometry and to assumptions regarding the inlet boundary conditions. We conclude that the assumption of Newtonian fluid is reasonable for studies aimed at quantifying the distribution of WSS-based extrema in an image-based CFD model of carotid bifurcation.

  • PDF

THE RELATIVE IMPORTANCE OF NON-NEWTONIAN CHARACTERISTICS OF BLOOD IN THE HEMODYNAMICS OF THE CAROTID BIFURCATION (경동맥 혈류유동에서의 혈액의 비뉴우토니안 특성의 상대적 중요성 해석)

  • Lee, S.W.;Steinman, D.A.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.181-185
    • /
    • 2008
  • In this study, we attempted to quantify the relative importance of assumptions regarding blood rheology. Three patient-specific carotid bifurcation geometries and time-varying flow rates were obtained using magnetic resonance imaging. For each subject, CFD simulations were carried out assuming two different non-Newtonian rheology models (Carreau and Ballyk models) and rescaled Newtonian viscosities based on characteristic shear rates to account for the shear-thinning property of blood. The sensitivity of WSS and oscillatory shear index (OSI) were contextualized with respect to the reproducibility of the reconstructed geometry and to assumptions regarding the inlet boundary conditions. We conclude that the assumption of Newtonian fluid is reasonable for studies aimed at quantifying the distribution of WSS-based extrema in an image-based CFD model of carotid bifurcation.

  • PDF

Numerical Investigation of the Moving Wall Effects in Turbulent Channel Flows (난류채널유동에서 움직이는 벽면에 대한 수치연구)

  • Hwang, Jun Hyuk;Lee, Jae Hwa
    • Journal of the Korean Society of Visualization
    • /
    • v.15 no.3
    • /
    • pp.27-33
    • /
    • 2017
  • Direct numerical simulations of turbulent channel flows with moving wall conditions on the top wall are performed to examine the effects of the moving wall on the turbulent characteristics. The moving wall velocity only applied to the top wall with the opposite direction to the main flow is systematically varied to reveal the sustained-mechanism for turbulence. The turbulence statistics for the Couette-Poiseuille flow, such as mean velocity, root mean square of the velocity fluctuations, Reynolds shear stress and pre-multiplied energy spectra of the velocity fluctuations, are compared with those of canonical turbulent channel flows. The comparison suggests that although the turbulent activity on the top wall increases with increasing the Reynolds number, that on the bottom wall decreases, contrary to the previous finding for the canonical turbulent channel flows. The increase of the turbulent energy on the top wall is attributed to not only the increase of the Reynolds number but also elongation of the logarithmic layer due to increase of the wall layer on the top wall. However, because the logarithmic layer is shortened on the bottom wall due to the decrease of the wall layer, the turbulence energy on the bottom wall decreases despite of the increase of the Reynolds number.

Nonlinear Seismic Response and Failure Behavior of reinforced Concrete Shear Wall Subjected to Base Acceleration (지반가속도에 의한 철근콘크리트 전단벽의 비선형 지진응답 및 파괴거동)

  • 유영화;신현목
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.3
    • /
    • pp.21-32
    • /
    • 1999
  • A ground motion resulting from the destructive earthquakes can subject reinforced concrete members to very large forces. The reinforced concrete shear walls are designed as earthquake-resistant members of building structure in order to prevent severe damage due to the ground motions. The current research activities on seismic behavior of reinforced concrete member under ground motions have been limited to the shaking table test or equivalent static cyclic test and the obtained results have been summarized and proposed for the seismic design retrofit of structural columns or shear walls. The present study predicted the seismic response and failure behavior of reinforced concrete shear wall subjected to base acceleration using the finite element method. A decrease in strength and stiffness, yielding of reinforcing bar, and repetition of crack closing and opening due to seismic load with cyclic nature are accompanied by the crack which is necessarily expected to take place in concrete member. In this study the nonlinear material models for concrete and reinforcing bar based on biaxial stress field and algorithm of dynamic analysis were combined to construct the analytical program using the finite element method. The analytical seismic response and failure behaviors of reinforced concrete shear wall subjected to several base accelerations were compared with reliable experimental result.

  • PDF

Nonlinear Analytical Model of Unreinforced Masonry Wall using Fiber and Shear Spring Elements (파이버 및 전단 스프링요소를 이용한 비보강 조적벽체의 비선형 해석모델)

  • Hong, Jeong-Mo;Shin, Dong-Hyeon;Kim, Hyung-Joon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.6
    • /
    • pp.283-291
    • /
    • 2018
  • This study intends to develop an analytical model of unreinforced masonry(URM) walls for the nonlinear static analysis which has been generally used to evaluate the seismic performance of a building employing URM walls as seismic force-resisting members. The developed model consists of fiber elements used to capture the flexural behavior of an URM wall and a shear spring element implemented to predict its shear response. This paper first explains the configuration of the proposed model and describes how to determine the modeling parameters of fiber and shear spring elements based on the stress-strain curves obtained from existing experimental results of masonry prisms. The proposed model is then verified throughout the comparison of its nonlinear static analysis results with the experimental results of URM walls carried out by other researchers. The proposed model well captures the maximum strength, the initial stiffness, and their resulting load - displacement curves of the URM walls with reasonable resolution. Also, it is demonstrated that the analysis model is capable of predicting the failure modes of the URM walls.

Turbulent Flow and heat Transfer in the Annular Passage with Repeated-Ribbed Roughness on Both Walls (양측벽면에 반복돌출형 거칠기가 있는 이중관통로내의 난류유동과 열전달)

  • 안수환;김덕현
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.1
    • /
    • pp.1-12
    • /
    • 1996
  • The fully developed tubulent momentum and heat transfer induced by the square- ribbed roughness elements on both the inner and outer wall surfaces in the concentric annuli are studied analytically based on a modified turbulence model. Heat transfer coefficients for two conditions, i.e, a) inner wall heated as constant heat flux and outer wall insulated b) inner wall insulated and outer wall heated as constant heat flux, are investigated. The analytical results of the fluid flow are verified by experiment. The experiment is done with a pitot tube and a X-type hot wire anemometer to measure the time mean velocity profiles, zero shear stress positions, maximum velocity profiles and friction factors, and etc. The resulting momentum and heat transfer are discussed in terms of various parameters, such as the radius ratio, the relative roughness, the roughness density, Nusselt number and Prandtl number.

  • PDF

Asymmetric flows of non-Newtonian fluids in symmetric stenosed artery

  • Hun Jung;Park, Jong-Wook;Park, Chan-Guk
    • Korea-Australia Rheology Journal
    • /
    • v.16 no.2
    • /
    • pp.101-108
    • /
    • 2004
  • The hemodynamics behavior of the blood flow is influenced by the presence of the arterial stenosis. If the stenosis is present in an artery, normal blood flow is disturbed. In the present study, the characteristics of pulsatile flow in the blood vessel with stenosis are investigated by the finite volume method. For the validation of numerical model, the computation results are compared with the experimental ones of Ojha et al. in the case of 45% stenosis with a trapezoidal profile. Comparisons between the measured and the computed velocity profiles are favorable to our solutions. Finally, the effects of stenosis severity and wall shear stress are discussed in the present computational analysis. It can be seen, where the non-dimensional peak velocity is displayed for all the stenosis models at a given severity of stenosis, that it is exponentially increased. Although the stenosis and the boundary conditions are all symmetric, the asymmetric flow can be detected in the more than 57% stenosis. The instability by a three-dimensional symmetry-breaking leads to the asymmetric separation and the intense swirling motion downstream of the stenosis.

NUMERICAL INVESTIGATION OF THE FLOW IN A MICRONOZZLE FOR SEAL DISPENSER (밀봉제 도포용 마이크로 노즐 설계를 위한 유동해석)

  • Park, G.J.;Kwak, H.S.;Sohn, B.C.;Kim, K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.10a
    • /
    • pp.236-242
    • /
    • 2007
  • A theoretical and numerical investigation is performed on the flow in a micronozzle for precision-controlled seal dispenser. The working fluid is a highly viscous epoxy used as sealant in producing LCD panels, which contains a number of tiny solid spacers. Flow analysis is conducted in order to achieve the optimal design oj internal geometry of a nozzle. A simplified design analysis methodology is proposed for predicting the flow in the nozzle based on the assumption that the Reynolds number is much less than O(1). The parallel numerical computations are performed by using a CFD package FLUENT. Comparison discloses that the theoretical model gives a good prediction on the distribution of pressure and wall shear stress in the nozzle. However, the theoretical model has a difficulty in predicting the maximum wall shear stress as found in a limited region near edge by numerical computation. The theoretical and numerical simulations provide the good guideline for designing a dispensing micronozzle.

  • PDF

Numerical Study of Pulsatile Blood Flow in Stenotic Artery (협착 동맥에서의 맥동 혈류 유동에 대한 수치해석적 연구)

  • Seo, Tae-Won;Buriev, Bahtiyor
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.11
    • /
    • pp.891-896
    • /
    • 2008
  • In the present computational study, simple stenotic artery models using pulsatile flow condition were investigated. A 1 Hz non-reversing sinusoidal velocity for pulsatile flow was imposed at the flow inlet and the corresponding Womersley number based on the vessel radius is 2.75. The simple stenotic geometries have been used that consist of 25%, 50% and 75% semicircular constriction in a cylindrical tube. In this paper, numerical solutions are presented for a first harmonic oscillatory flow using commercial software ADINA 8.4. As stenosis and Reynolds number increase, the maximum wall shear stress(WSS) increases while the minimum WSS decreases. As the stenotic rate increases, the pressure drop at the throat severely decreases to collapse the artery and plaque. It is found that the fluid mechanical disturbances due to the constriction were highly sensitive with rate of stenosis and Reynolds number. When Reynolds number and stenosis increase, the larger recirculation region exists. In this recirculation region the possibility of plaque attachment is increasingly higher. The present results enhance our understanding of the hemodynamics of a stenotic artery.