• 제목/요약/키워드: wall inlet

검색결과 357건 처리시간 0.023초

회전냉각기에서 고체와 가스의 온도분포해석 (Analysis of Temperature Distribution of Solid and Gas in the Rotary Cooler)

  • 이만승;최주석;전철근
    • 자원리싸이클링
    • /
    • 제11권3호
    • /
    • pp.25-30
    • /
    • 2002
  • 회전냉각기에서 일어나는 정상상태 열전달을 1차원으로 해석하였다 회전냉각기로 입력되고 배출되는 공기온도를 경계조건으로 삼았다. 경계 및 조업조건으로부터 2개의 상미분방정식과 2개의 대수방정식을 동시에 만족시키는 해를 계산하여 고체, 공기 벽의 온도분포를 구하였다. 본 연구에서 계산한 외벽온도는 실제 가동중인 회전냉각기에서 실측한 외벽온도와 서로 잘 일치하였다.

AC-PDP에서 지터와 방전 늦음 시간 개선을 위한 연구 (A study of the Improvement for Jitter and Discharge Delay Time in AC-PDP)

  • 권시옥;김지선;정봉규;황호정
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.506-507
    • /
    • 2005
  • The effects of addition of $D_2$ to conventional gases [Ne-Xe and He-Ne-Xe] on the discharge characteristics were investigated in this work with the aim of improving the voltage margin, the wall charge and the jitter. The addition of an extremely small gas-inlet amounts of $D_2$ increased the number of electrons which improves. the $Xe^*$ density and $Xe_2^*$ density. As a result, the voltage margin, the jitter and the wall charge increased.

  • PDF

Computational evaluation of wind loads on buildings: a review

  • Dagnew, Agerneh K.;Bitsuamlak, Girma T.
    • Wind and Structures
    • /
    • 제16권6호
    • /
    • pp.629-660
    • /
    • 2013
  • This paper reviews the current state-of-the-art in the numerical evaluation of wind loads on buildings. Important aspects of numerical modeling including (i) turbulence modeling, (ii) inflow boundary conditions, (iii) ground surface roughness, (iv) near wall treatments, and (vi) quantification of wind loads using the techniques of computational fluid dynamics (CFD) are summarized. Relative advantages of Large Eddy Simulation (LES) over Reynolds Averaged Navier-Stokes (RANS) and hybrid RANS-LES over LES are discussed based on physical realism and ease of application for wind load evaluation. Overall LES based simulations seem suitable for wind load evaluation. A need for computational wind load validations in comparison with experimental or field data is emphasized. A comparative study among numerical and experimental wind load evaluation on buildings demonstrated generally good agreements on the mean values, but more work is imperative for accurate peak design wind load evaluations. Particularly more research is needed on transient inlet boundaries and near wall modeling related issues.

환상유로에 있어서 수직고온관의 과도적 냉각과정에 관한 연구 (A study on the transient cooling process of a vertical-high temperature tube in an annular flow channel)

  • 정대인;김경근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제10권2호
    • /
    • pp.156-164
    • /
    • 1986
  • In the case of boiling on high temperature wall, vapor film covers fully or parcially the surface. This phenomenon, film boiling or transition boiling, is very important in the surface heat treatment of metal, design of cryogenic heat exchanger and emergency cooling of nuclear reactor. Mainly supposed hydraulic-thermal accidents in nuclear reactor are LCCA (Loss of Coolant Accident) and PCM (Power-Cooling Mismatch). Recently, world-wide studies on reflooding of high temperature rod bundles after the occurrence of the above accidents focus attention on wall temperature history and required time in transient cooling process, wall superheat at rewet point, heat flux-wall superheat relationship beyond the transition boiling region, and two-phase flow state near the surface. It is considered that the further systematical study in this field will be in need in spite of the previous results in ref. (2), (3), (4). The paper is the study about the fast transient cooling process following the wall temperature excursion under the CHF (Critical Heat Flux) condition in a forced convective subcooled boiling system. The test section is a vertically arranged concentric annulus of 800 mm long and 10 mm hydraulic diameter. The inner tube, SUS 304 of 400 mm long, 8 mm I.D, and 7 mm O.D., is heated uniformly by the low voltage AC power. The wall temperature measurements were performed at the axial distance from the inlet of the heating tube, z=390 mm. 6 chromel- alumel thermocouples of 76 .mu.m were press fitted to the inner surface of the heating tube periphery. To investigate the heat transfer characteristics during the fast transient cooling process, the outer surface (fluid side) temperature and the surface heat flux are computed from the measured inner surface temperature history by means of a numerical method for inverse problems of transient heat conduction. Present cooling (boiling) curve is sufficiently compared with the previous results.

  • PDF

평행관 모델링을 통한 보일러 화로벽관 내 밀도파 불안정의 해석 (Analysis of Density Wave Oscillation in Boiler Furnace Wall Tubes with Parallel Channel Modeling)

  • 김진일;최상민
    • 대한기계학회논문집B
    • /
    • 제37권2호
    • /
    • pp.187-196
    • /
    • 2013
  • 화력발전용 관류보일러 화로벽관에서의 밀도파 불안정 예측을 목적으로 수치모델을 개발하였다. 시간 도메인에서 1 차원 유한체적법을 적용하여 관내 비정상상태의 유동장을 계산하였으며, 화로벽관의 평행관 연결을 모사하기 위해 헤더의 모델도 포함하였다. 평행관들 가운데 하나의 관에 열 섭동을 부가 후 관 입출구 유량의 변동을 관찰함으로써 밀도파 불안정을 찾았다. 개발된 모델은 문헌의 실험결과와 검증을 거쳐 700MW 보일러 화로벽관에 적용하였다. 그 결과 Takitani 의 실험결과에서는 평행으로 연결된 우회 유량이 줄어들수록 불안정 경계 열량이 상승하는 경향이 있었던 반면, 보일러 화로벽관의 경우에는 평행관 모델링에 크게 영향을 받지 않음을 확인하였다.

벽면을 통한 유체유동을 수반한 난류유동장 해석 (Analysis of Turbulent Flows with Wall Transpiration)

  • 유근종;서영수
    • 한국추진공학회지
    • /
    • 제2권3호
    • /
    • pp.20-35
    • /
    • 1998
  • 벽면을 통한 유체의 유동이 있는 난류운동장의 특성을 분석하였다. 벽면을 통한 유체의 유동은 유출과 유입의 경우를 포함하여 Re$_{w}$ 의 절대크기가 0~160으로 다양하며 입구에서의 $Re_{in}$도 3${\times}$$10^3$에서 8${\times}$$10^4$까지 넓은 범위를 대상으로 하였다. 벽면을 통한 유체의 유동은 벽면 경계층의 변화를 초래하고 이에 따라 난류 유동장의 급격한 변화를 일으켜 벽면을 포함한 전 유동장의 특성을 변화시킨다. 이러한 복잡한 유동장을 올바로 예측하기 위하여 난류운동에너지 소산율 방정식의 자 항에 대한 모델을 개선한 수정 $\kappa$-$\varepsilon$ 모델을 도입하였으며 기존의 난류모델과의 비교를 통하여 성능 검증을 시도하였다. 해석을 통한 분석결과로부터 수정 $\kappa$-$\varepsilon$ 모델은 벽면을 통한 유체유동이 있는 복잡한 유동장을 올바로 예측할 수 있음을 알 수 있었다. 따라서 수정 $\kappa$-$\varepsilon$ 모델을 이용하여 다양한 경우의 벽면 및 입구 조건을 갖는 난류유동장을 해석할 수 있을 것으로 판단된다.단된다.

  • PDF

Heat Transfer and Frictions in the Rectangular Divergent Channel with Ribs on One Wall

  • Lee, MyungSung;Ahn, SooWhan
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제17권3호
    • /
    • pp.352-357
    • /
    • 2016
  • An investigation of ribbed divergent channel was undertaken to determine the effect of rib pitch to height ratio on total friction factor and heat transfer results in the fully developed regime. The ribbed divergent rectangular channel with the channel exit hydraulic diameter ($D_{ho}$) to inlet channel hydraulic diameter ($D_{hi}$) ratio of 1.16 with wall inclination angle of 0.72 deg, at which the ratios (p/e) of 6,10, and 14 are considered. The ribbed straight channel of $D_{ho}/D_{hi}=1.0$ were also used. The ribbed divergent wall is manufactured with a fixed rib height (e) of 10 mm and the ratio of rib spacing (p) to height 6, 10, and 14. The measurement was run with range of Reynolds numbers from 24,000 to 84,000. The comparison shows that the ratio of p/e=6 has the greatest thermal performance in the divergent channel under two constraints; identical mass flow rate and identical pressure drop.

한 벽면에 V형 리브가 있는 2면 확대 사각채널의 열전달 (Heat Transfer in a Two Wall Divergent Rectangular Channel with V-Shaped Ribs on One Wall)

  • 이명성;안수환
    • 동력기계공학회지
    • /
    • 제19권5호
    • /
    • pp.32-37
    • /
    • 2015
  • The present study is to investigates the convective heat transfer characteristics and pressure drop inside the rib-roughened cooling passage of gas turbine blades. The divergent rectangular channel is fabricated with V-shaped ribs on one wall only and the inlet hydraulic diameter to outlet hydraulic diameter ratio($D_{ho}/D_{hi}$) of 1.49 is used. The current investigation has covered a Reynolds number (Re) range of 22,000~75,000, relative roughness height ($e/D_h$) of 0.1~0.2, and rib angle of attack (a) of $30^{\circ}$, $45^{\circ}$, and $60^{\circ}$ for a fixed relative pitch of 10. Results show that the Nusselt numbers are the greatest in the $60^{\circ}$-angled ribs; however, the total friction factors are the highest in the $30^{\circ}$-angled ribs.

정4각단면덕트의 입구영역에서 난류맥동유동의 압력분포, 전단응력분포와 관마찰계수에 관한 연구(Ⅰ), - 실험해석- (A Study on Pressure Distribution, Wall Shear Stress and Friction Factor of Developing Turbulent Pulsating Flows in a Square Duct(Ⅰ), -Experimental Analysis-)

  • 박길문;조병기;고영하;봉태근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제20권5호
    • /
    • pp.58-67
    • /
    • 1996
  • In the present study, the pressure distribution, wall shear stress distribution and friction factor of developing turbulent pulsating flows are investigated theoretically and experimentally in the entrance region of a square duct. The pressure distribution for turbulent pulsating flows are in good agreement with the theoretical values. The time-averaged pressure gradients of the turbulent pulsating flows show the same tendency as those of turbulent steady flows as the time-averged Reynolds number $(Re_{ta})$ increase. Mean shear stresses in the turbulent pulsating flow increase more in the inlet flow region than in the fully developed flow region and approach to almost constant value in the fully developed flow region. In the turbulent pulsating flow, the friction factor of the quasi-steady state flow $({\lambda}_{q, tu})$ follow friction factor's law in turbulent steady flow. The entrance length of the turbulent pulsating flow is not influenced by the time-averaged Reynolds number $(Re_{ta})$ and it is about 40 times as large as the hydraulic diameter.

  • PDF

증기발생기 급수링 관통손상 원인 및 영향 고찰 (Study on Cause and Effect of SG Feed Water Ring Through-Wall Hole)

  • 이성호;이요섭
    • 한국압력기기공학회 논문집
    • /
    • 제11권1호
    • /
    • pp.61-68
    • /
    • 2015
  • The function of Feed Water Ring is to provide the flow path from Feedwater Nozzle to inside of SG(steam generator). Significant amounts of general FAC on the outside of the Feed Water Ring are not likely due to the low flow velocities in this area. However, on the interior of the Feed Water Ring, there may be areas of local higher flow velocity which could lead to higher FAC rates. These may include the inlet tee from the Feedwater Nozzle into the Feed Water Ring, the areas where the Feed Water Ring changes diameter, and especially the entrance area to the J-Nozzles. In this paper, the results of root cause analysis of through-wall hole observed at domestic WH 51F SG Feed Water Ring and its effect on the integrity and performance of SG are described. And, the maintenance strategy for WH 51F SG Feed Water Ring and the monitoring strategy for Downcomer Feed Water Ring of CE System 80 SG are presented.