• Title/Summary/Keyword: wall height

Search Result 895, Processing Time 0.028 seconds

Optimum design of axially symmetric cylindrical reinforced concrete walls

  • Bekdas, Gebrail
    • Structural Engineering and Mechanics
    • /
    • v.51 no.3
    • /
    • pp.361-375
    • /
    • 2014
  • The main aim of this paper is to investigate the relationship between thickness and height of the axially symmetric cylindrical reinforced concrete (RC) walls by the help of a meta-heuristic optimization procedure. The material cost of the wall which includes concrete, reinforcement and formwork, was chosen as objective function of the optimization problem. The wall thickness, compressive strength of concrete and diameter of reinforcement bars were defined as design variables and tank volume, radius and height of the wall, loading condition and unit cost of material were defined as design constants. Numerical analyses of the wall were conducted by using superposition method (SPM) considering ACI 318-Building code requirements for structural concrete. The optimum wall thickness-height relationship was investigated under three main cases related with compressive strength of concrete and density of the stored liquid. According to the results, the proposed method is effective on finding the optimum design with minimum cost.

A Study on Stability and Economic feasibility according to Height on the MSE Wall with Pacing Panel (고속도로 도로부에 시공된 패널식 보강토 옹벽의 높이별 안전율과 경제성 검토)

  • Park, Min-Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.54-63
    • /
    • 2018
  • In this study, the stability and economic feasibility of a MSE (Mechanically stability earth) wall with a pre-cast concrete pacing panel was investigated for a standard section of highway. Based on the design criteria, the MSE walls of the panel type were designed considering the load conditions of the highway, such as the dead load of the concrete pavement, traffic load, and impact load of the barrier. The length of the ribbed metal strip was arranged at 0.9H according to the height of the MSE walls. Because the length of the reinforcement was set to 0.9H according to the height of the MSE wall, the external stability governed by the shape of the reinforced soil was not affected by the height increase. The factor of safety (FOS) for the bearing capacity was decreased drastically due to the increase in self-weight according to the height of the MSE wall. As a result of examining the internal stability according to the cohesive gravity method, the FOS of pullout was increased and the FOS of fracture was decreased. As the height of the MSEW wall increases, the horizontal earth pressure acting as an active force and the vertical earth pressure acting as a resistance force are increased together, so that the FOS of the pullout is increased. Because the long-term allowable tensile force of the ribbed metal strip is constant, the FOS of the fracture is decreased by only an increase in the horizontal earth pressure according to the height. The panel type MSE wall was more economical than the block type at all heights. Compared to the concrete retaining wall, it has excellent economic efficiency at a height of 5.0 m or more.

Characteristics of Impinging Diesel Spray on the Heated Flat Wall in High Temperature and High Pressure Environments (고온.고압 환경에서 가열평판에 충돌하는 디젤분무의 특성)

  • Im, Gyeong-Hun;Lee, Bong-Su;Kim, Jong-Hyeon;Gu, Ja-Ye
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.5
    • /
    • pp.627-633
    • /
    • 2001
  • Characteristics of a diesel spray impingement with the variation of ambient temperature, wall temperature and ambient pressure were investigated through shadowgraphy method by using high speed camera. The radial penetration of spray was increased with ambient temperature and wall temperature. It is resulted from the decrease of ambient gas density caused by the increase of temperature. The height of spray was also increased with ambient temperature and wall temperature, because the height of stagnate region is noticeably increased, although height of wall jet vortex is decreased. At the same ambient pressure, the area ratio of impinging spray of room temperature environment to high temperature environment was increased, as the temperature difference between room temperature and high temperature increases. And the increment of area ratio was higher at low ambient pressure than high ambient pressure.

An Experimental Study of Smoke Movement of the Various Fire Location in Room (실내공간에서 화재 발생위치에 따른 연기거동에 대한 실험연구)

  • Yu, Hong-Seon;Jeong, Jin-Yong;Lee, Jae-Ha;Hong, Gi-Bae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.5
    • /
    • pp.703-709
    • /
    • 2002
  • In order to investigate the smoke movement in three dimensional room fires, the center fire, wall fire and corner fire plume in different sized fires were studied experimentally by rectangular pool fire using methanol as a fuel. As the fire size became larger for the center fires placed at the center of the floor, the air flow rate entrained through the opening, average hot layer temperature, flame angle deflected backwards and mean flame height was observed to increase. On the other hand, as the fire size became smaller, the neutral plane height in the door and time reached steady-state was observed to decrease. The average hot layer temperature, mean flame height and doorway neutral plane height obtained from comer fire were higher than those produced by wall fires and center fires. The simple model for describing the effect of walls on the mean flame height was presented. It was shown that the model provides a good description of the present measurements, when used with the assumption by Hansell(1993), that the increase of the average flame height is equal to the ratio of the open to the total perimeters of the trays. Also the two models for predicting the effects of walls on the mean flame height were presented. These models overestimated the measured values of the mean flame height above fuel trays close to a wall and in a corner by approximately 19-26%, respectively.

Evaluation of Construction RCB Exterior Wall Formwork according to Placing Height on Nuclear Power Plant

  • Song, Hyo-Min;Sohn, Young-Jin;Shin, Yoonseok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.6
    • /
    • pp.653-660
    • /
    • 2015
  • Technologies for reducing construction duration are key factors in nuclear power plant construction projects, as a reduction in construction duration at the construction phase leads to a reduction in construction cost and an increase in profits through the early operation of the nuclear power plant. To analyze the constructability of the height of single-layer placement of formwork for the Reactor Containment Building (RCB) exterior wall through lateral pressure according to the height of concrete placement, the deformation criteria for formwork, and a new form design, 'MIDAS GEN (hereinafter referred to as MIDAS)' is used in this study. The cost and workload of formwork are derived according to the unit of height of the RCB exterior wall. Based on the result, it was found that the higher the RCB exterior wall, the higher the material cost, and the less the construction duration and the less the total number of formwork layers. Based on this result, it is believed that the material cost and the construction duration can be appropriately determined according to the formwork height.

Effects of vertical wall and tetrapod weights on wave overtopping in rubble mound breakwaters under irregular wave conditions

  • Park, Sang Kil;Dodaran, Asgar Ahadpour;Han, Chong Soo;Shahmirzadi, Mohammad Ebrahim Meshkati
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.4
    • /
    • pp.947-964
    • /
    • 2014
  • Rubble mound breakwaters protect the coastal line against severe erosion caused by wave action. This study examined the performance of different sizes and properties (i.e. height of vertical wall and tetrapod size) of rubble mound breakwaters on reducing the overtopping discharge. The physical model used in this study was derived based on an actual rubble mound in Busan Yacht Harbor. This research attempts to fill the gap in practical knowledge on the combined effect of the armor roughness and vertical wall on wave overtopping in rubble mound breakwaters. The main governing parameters used in this study were the vertical wall height, variation of the tetrapod weights, initial water level elevation, and the volume of overtopping under constant wave properties. The experimental results showed that the roughness factor differed according to the tetrapod size. Furthermore, the overtopping discharge with no vertical wall was similar to that with relatively short vertical walls (${\gamma}_v=1$). Therefore, the experimental results highlight the importance of the height of the vertical wall in reducing overtopping discharge. Moreover, a large tetrapod size may allow coastal engineers to choose a shorter vertical wall to save cost, while obtaining better performance.

Analysis of Lateral Earth Pressures on Retaining Wall from Traffic Load Distribution (옹벽 상단 교통하중의 분포에 따른 옹벽의 수평 토압 분석)

  • Lee, Kicheol;Kim, Dongwook;Chung, Moon-Kyung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.4
    • /
    • pp.43-55
    • /
    • 2017
  • The purpose of this study is to investigate the effect of traffic loads on retaining wall stability. There is insufficient research on lateral earth pressure on retaining wall due to traffic load. In addition, limited detailed designs of retaining wall for transportation including number of lanes of road, magnitudes of axle loads, and vehicle formations are available. Because the lateral earth pressure on the retaining wall due to traffic loads is a function of the lateral distance from retaining wall, the wall height, and the locations of lanes, the analysis of lateral load on retaining wall from traffic loads is performed with direct or indirect reflection of these factors. As a result of the analysis, lateral earth loads induced from traffics can be considered negligible if the lateral distance of traffic load from wall exceeds the height of retaining wall. Therefore, it is practically reasonable to consider traffic loads within a lateral distance between wall and traffic load of the height of retaining wall.

Analytical simulation of reversed cyclic lateral behaviors of an RC shear wall sub-assemblage

  • Lee, Han Seon;Jeong, Da Hun;Hwang, Kyung Ran
    • Computers and Concrete
    • /
    • v.10 no.2
    • /
    • pp.173-196
    • /
    • 2012
  • Experimental results of cyclic reversed lateral force test on a two-story reinforced concrete shear wall sub-assemblage are simulated analytically by using the PERFORM-3D program. A comparison of experimental and analytical results leads to the following conclusions: (1) "Shear Wall" and "General Wall" models with "Concrete shear" cannot simulate the pinching phenomena due to shear and show larger amounts of inelastic energy absorption than those in the experiment. (2) Modeling a story-height wall by using two or more "General Wall" elements with "Diagonal shear" in the vertical direction induces the phenomenon of swelling-out at the belly, leading to the erroneous simulation of shear behaviors. In application to tall building structures, it is recommended to use one element of "General Wall" with "Diagonal shear" for the full height of a story. (3) In the plastic hinge area, concrete deformations of analytical models overestimate elongation and underestimate shortening when compared with experimental results.

A Study on Effects of Decorative Interior Wall Paintings of the antique Rome on the Scientific Perspective (고대 로마의 실내 장식벽화가 과학적인 원근법에 미친 영향 연구)

  • Hong, Jae-Dong
    • Journal of architectural history
    • /
    • v.11 no.3 s.31
    • /
    • pp.69-86
    • /
    • 2002
  • Under the assumption that techniques of interior decoration often frequently used by people of the antique Greece and Rome became basis for scientific perspective in the period of Renaissance, this study analyzed characteristics of wall paintings excavated as relics of the antique Greece and Rome. The result of the study can be summarized as follows ; (1) Decorative wall paintings which were and have been excavated from relics of the antique Roman cities are characterized by single and multiple point techniques as their perspective. The two techniques were later adapted by people of the Baroque in the 16th century who recognized and expressed space through putting it into a certain framework. (2) Such antique wall paintings drawn using the technique of single point clearly indicate that the technique was not fully created in the period of Renaissance but developed by people of the antique Greece and Rome. Unlike its present form, the technique was unsophisticated and poor in many respects when first created. Since then, it has become manipulated as spatial recognition has been developed in various ways. (3) Illustrations on vase surfaces or wall-decorative painting panels of the antique Greece were painted mainly through the technique of multiple points which helped changes in the sense of space. The technique were later complied with by the theory of cubism which was emerged in the late 19th century. In other words, the technique was developed over times into a basis of the theory. (4) Some of the antique Roman and Greek wall paintings were drawn by using the method of single point perspective. When the height of the wall foundation, 90cm, as specified in [Ten Books of Architecture] by Vitrubius, the viewpoint for the method almost complied with the height of spectators' view, or 150cm. This height is almost same as the height of the view point employed by wall paintings in the Renaissance period.

  • PDF

Effects of pile geometry on bearing capacity of open-ended piles driven into sands

  • Kumara, Janaka J.;Kurashina, Takashi;Kikuchi, Yoshiaki
    • Geomechanics and Engineering
    • /
    • v.11 no.3
    • /
    • pp.385-400
    • /
    • 2016
  • Bearing capacity of open-ended piles depends largely on inner frictional resistance, which is influenced by the degree of soil plugging. While a fully-plugged open-ended pile produces a bearing capacity similar to a closed-ended pile, fully coring (or unplugged) pile produces a much smaller bearing capacity. In general, open-ended piles are driven under partially-plugged mode. The formation of soil plug may depend on many factors, including wall thickness at the pile tip (or inner pile diameter), sleeve height of the thickened wall at the pile tip and relative density. In this paper, we studied the effects of wall thickness at the pile base and sleeve height of the thickened wall at the pile tip on bearing capacity using laboratory model tests. The tests were conducted on a medium dense sandy ground. The model piles with different tip thicknesses and sleeve heights of thickened wall at the pile tip were tested. The results were also discussed using the incremental filling ratio and plug length ratio, which are generally used to describe the degree of soil plugging. The results showed that the bearing capacity increases with tip thickness. The bearing capacity of piles of smaller sleeve length (e.g., ${\leq}1D$; D is pile outer diameter) was found to be dependent on the sleeve length, while it is independent on the sleeve length of greater than a 1D length. We also found that the soil plug height is dependent on wall thickness at the pile base. The results on the incremental filling ratio revealed that the thinner walled piles produce higher degree of soil plugging at greater penetration depths. The results also revealed that the soil plug height is dependent on sleeve length of up to 2D length and independent beyond a 2D length. The piles of a smaller sleeve length (e.g., ${\leq}1D$) produce higher degree of soil plugging at shallow penetration depths while the piles of a larger sleeve length (e.g., ${\geq}2D$) produce higher degree of soil plugging at greater penetration depths.