• 제목/요약/키워드: wall frictional angle

검색결과 12건 처리시간 0.016초

실트질모래 지반에서 버켓기초의 압입저항력에 대한 원심모형실험 연구 (Jacking Penetration Resistance of Bucket Foundations in Silty Sand Using Centrifuge Modelling)

  • 김동준;윤준웅;이규열;지성현;추연욱
    • 한국지반공학회논문집
    • /
    • 제31권1호
    • /
    • pp.25-35
    • /
    • 2015
  • 서남해안 지역의 중간조밀한 실트질모래 지반에서 버켓기초 스커트벽체의 압입저항력을 원심모형실험을 통하여 분석하였다. 압입저항력은 석션을 작용하지 않고 버켓기초를 지반에 관입시킬 때 발생하는 저항력으로서 자중관입 깊이와 직접적으로 관계된다. 스커트벽체의 주면저항력에 의한 지반의 응력증가 효과를 고려하는 방법(Houlsby and Byrne, 2005) 을 기반으로 실험 결과와 유사한 압입저항력을 산정할 수 있었다. 압입저항력 산정에 이용되는 수평토압계수, 스커트 벽체와 지반간의 경계면 마찰각 등의 주요 물성값의 산정 방법에 대하여 기술하였다. 또한, 응력증가 효과의 고려 여부와 물성값의 변화가 압입저항력 산정 결과에 미치는 영향과 실험을 통해 계측된 압입시 지반거동에 대하여 분석하였다.

Performance Evaluation of Hypersonic Turbojet Experimental Aircraft Using Integrated Numerical Simulation with Pre-cooled Turbojet Engine

  • Miyamoto, Hidemasa;Matsuo, Akiko;Kojima, Takayuki;Taguchi, Hideyuki
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.671-679
    • /
    • 2008
  • The effect of Pre-cooled Turbojet Engine installation and nozzle exhaust jet on Hypersonic Turbojet EXperimental aircraft(HYTEX aircraft) were investigated by three-dimensional numerical analyses to obtain aerodynamic characteristics of the aircraft during its in-flight condition. First, simulations of wind tunnel experiment using small scale model of the aircraft with and without the rectangular duct reproducing engine was performed at M=5.1 condition in order to validate the calculation code. Here, good agreements with experimental data were obtained regarding centerline wall pressures on the aircraft and aerodynamic coefficients of forces and moments acting on the aircraft. Next, full scale integrated analysis of the aircraft and the engine were conducted for flight Mach numbers of M=5.0, 4.0, 3.5, 3.0, and 2.0. Increasing the angle of attack $\alpha$ of the aircraft in M=5.0 flight increased the mass flow rate of the air captured at the intake due to pre-compression effect of the nose shockwave, also increasing the thrust obtained at the engine plug nozzle. Sufficient thrust for acceleration were obtained at $\alpha=3$ and 5 degrees. Increase of flight Mach number at $\alpha=0$ degrees resulted in decrease of mass flow rate captured at the engine intake, and thus decrease in thrust at the nozzle. The thrust was sufficient for acceleration at M=3.5 and lower cases. Lift force on the aircraft was increased by the integration of engine on the aircraft for all varying angles of attack or flight Mach numbers. However, the slope of lift increase when increasing flight Mach number showed decrease as flight Mach number reach to M=5.0, due to the separation shockwave at the upper surface of the aircraft. Pitch moment of the aircraft was not affected by the installation of the engines for all angles of attack at M=5.0 condition. In low Mach number cases at $\alpha=0$ degrees, installation of the engines increased the pitch moment compared to no engine configuration. Installation of the engines increased the frictional drag on the aircraft, and its percentage to the total drag ranged between 30-50% for varying angle of attack in M=5.0 flight.

  • PDF