• Title/Summary/Keyword: wall deformation

Search Result 667, Processing Time 0.03 seconds

Approximate Coordinate Transformations for Simulation of Turbulent Flows with Wall Deformation

  • Kang, Sangmo
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.703-709
    • /
    • 2002
  • In the present paper, approximate coordinate transformations for simulation of turbulent flows with wall deformation, significantly reducing computational cost with little degradation in numerical accuracy, are presented. The Wavier-Stokes equations are coordinate-transformed with an approximation of Tailor-series truncation. The performance is evaluated by performing numerical simulations of a channel flow at Re$\sub$$\tau$/ = 140 with active wall motions of η$\sub$m/$\^$+/ $\leq$5. The approximate transformations provide flow structures as well as turbulence statistics in good agreement with those from a complete transformation [Phys. Fluids 12, 3301 (2000) ] and allow 25-30% savings in the CPU time as compared to the complete one.

An Investigation on the Effects of Powder Warming, Inner Lubrication, and Die Wall Lubrication on the Die Wall Lubricated Warm Compation of Iron Powder

  • Ozaki, Yukiko;Alessandri, Elena;Uenosono, Satoshi;Takamiya, Tsuguyuki;Shigeru, Takano
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.750-751
    • /
    • 2006
  • We investigated the mechanism how the high green density can be provided during die lubricated warm compaction (WD). We observed and analyzed the densification processes of iron powders including different contents of an inner lubricant, and measured the lateral pressure at the die wall during WD in comparison with conventional compaction and warm compaction. As a result, the high density in WD was due to not only the particles-deformation enhanced by warming powders but also the particles-rearrangement promoted by reducing an amount of the inner lubricant rather than the die lubrication.

  • PDF

The Development and Application of KOESWall System (분리형 보강토 옹벽의 개발 및 적용사례)

  • 김영윤
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.10a
    • /
    • pp.323-328
    • /
    • 2001
  • In the ordinary reinforced earth wall, which was constructed by incremental construction method, the horizontal deformation of the facing due to the compaction induced horizontal earth pressure was unavoidable. Thus the KOESWall system which are adopted the isolated construction method was developed by I&S Eng. Co., Ltd. in 1999. Due to its systematical feature, KOESWall system is able to minimizes the horizontal deformation of reinforced wall effectively and it can be used as temporary structures more economically without the lacing block. In this report, it is shown that the concept and case histories of KOESWall system as a retaining structures.

  • PDF

A Study on the Ground Deformation by lowering of Slurry level after Trench Excavation (트렌치굴착 후 안정액 수위 저하에 의한 지반변형에 관한 연구)

  • Hong, Won-Pyo;Han, Jung-Geun;Shin, Kwan-Young;Lee, Mun-Ku
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1455-1460
    • /
    • 2005
  • This paper presents the results of an experimental study on the ground deformation by trench excavation for Diaphragm Wall construction. The model tests are performed to investigate the back ground deformation by lowering of slurry level in trench after excavating. Through these, the deformation characteristic of the back ground due to stress release of excavated space was investigated. This study considered relative density of soil mass and the distance between trench and surcharge. An experiment was performed in order to observe the failure pattern of a slurry-supported trench excavated in sandy ground. From model tests, in order to predict reasonably the deformation behavior of the adjacent ground due to the underground excavation, it is significantly recommended that the ground settlement by trench excavation should be considered.

  • PDF

Research on no coal pillar protection technology in a double lane with pre-set isolation wall

  • Liu, Hui;Li, Xuelong;Gao Xin;Long, Kun;Chen, Peng
    • Geomechanics and Engineering
    • /
    • v.27 no.6
    • /
    • pp.537-550
    • /
    • 2021
  • There are various technical problems need to be solved in the construction process of pre-setting an isolation wall into a double lane in the outburst prone mine. This study presents a methodology that pre-setting an isolation wall into a double lane without a coal pillar. This requires the excavation of two small section roadways to dig a wide section roadway, followed by construction of the separation wall. During this process the connecting lane is reserved. In order to ensure the stability of the separation wall, the required bearing capacity of the isolation wall is 4.66 MN/m and the deformation of the isolation wall is approximately 25 cm. To reduce the difficulty of implementing support the roadway is driven by 5 m/d. After the construction of the separation wall, the left side coal wall is brushed 1.5 m to make the width of the gas roadway reach 2.5 m and the roadway support utilizes anchor rod, ladder beam, anchor cable beam and net configuration. During construction, the concrete pump and removable self-propelled hydraulic wall mold are used to pump and pour the concrete of the isolation wall. In the process of mining, the stress distribution of coal body and isolation wall is detected and measured on site. The results demonstrate that the deformation of the surrounding rock of roadway and separation of roof in the roadway is small. The stress of the bolt and anchor cable is within equipment tolerance validating their selection. The roadway is well supported and the intended goal is achieved. The methodology can be used for reference for similar mine gas control.

Behavior Analysis of Block Type Wall Constructed for Maintaining the Slope Stability of Rural Structure (농촌건축물 사면 안정성 확보를 위한 블록식 옹벽의 거동분석)

  • Shin, Bangwoong;Oh, Sewook;Kwon, Youngcheul
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.2 no.2
    • /
    • pp.115-126
    • /
    • 2000
  • Retaining walls are used to prevent excessive movement of retained soils. Typical retaining walls include gravity, reinforced concrete, reinforced earth and tie-back. However, from a practical viewpoint there are still drawbacks among these often constructed retaining walls. New types of retaining walls constructed with precast concrete blocks are proposed. This type of retaining wall is incorporates each blocks interconnected with adjacent block by connecting unit to build up a flexible retaining-wall system. This paper focus to behavior characteristics includes deformation and distribution of lateral earth pressure by loading tests and FEM analysis. For model tests, a 1/10 scale reduce models are manufactured include unevenness part, drainage hole and connecting unit and steel wire used to connect each blocks with adjacent block. To simulate the real retaining walls closely, uneven parts are interconnected each other and the construction type of blocks and wall front inclination are varied to investigate the relative displacement of individual block and the location of maximum deformation of wall as increasing surcharging. Additionally, PENTAGON3D, which solve the geotechnical and other problem, used for verifying and comparing with model tests.

  • PDF

Behavior of Precast Concrete Shear Walls with C-Type Connections (C형 접합부를 이용한 프리캐스트 콘크리트 전단벽의 거동)

  • Lim, Woo-Young;Hong, Sung-Gul
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.4
    • /
    • pp.461-472
    • /
    • 2010
  • This paper investigates the behavior of precast concrete (PC) shear walls with a new vertical connections for a fast remodeling construction. The C-type vertical connections for the PC wall systems are proposed for transfer of bending moment between top and bottom walls in the vertical direction while a shear key in the center of wall is prepared to transfer shear forces by bearing action. The proposed vertical connections allows easy fabrication thanks to slots at the edges of wall in opposite directions. The plane PC wall systems subject to lateral load are compared with ordinary wall systems by investigating the effects of connection on the stiffness, strength, ductility, and failure modes of whole systems. The load-displacement relationship and influence of premature failure of connections are examined. The experimental test showed that the longitudinal reinforcing steel bars placed at the edges of walls yielded first and the ultimate deformation were terminated due to premature failure of connections. The diagonal reinforcements for efficient shear transfer in the walls were not effective. The strength and deformation obtained through the section analysis were generally in agreement with the experimental data, and indicated that. Gap opening contributed to the deformation behavior more than any other factors.

Long-Term Performance of Full-Scale Tiered Geogrid Reinforced Wall under Sustained Load (실대형 계단식 보강토 옹벽의 지속 하중하에서의 장기변형 거동 특성)

  • Yoo, Chung-Sik;Jung, Hye-Young;Lee, Bong-Won
    • Journal of the Korean Geosynthetics Society
    • /
    • v.4 no.2
    • /
    • pp.29-38
    • /
    • 2005
  • It is essential to take consideration of long-term deformation characteristics of mechanically stabilized earth wall user sustained and repeated loads for design and construction, especially for use as part of permanent structures. This paper presents the long-term performance of a full-scale geogrid reinforced segmental retaining wall results based on the measured strains in geogrids for three years. The results indicate that the reinforcement tensile strains tend to continuously increase after wall completion with the increase being more pronounced in the reinforcement layers in the lower tier. It can be concluded that the long-term deformation should be taken in account for walls constructed as part of permanent structures for which wall deformation should be controlled.

  • PDF

Strength Properties of Wooden Retaining Walls Manufactured with Pinus rigida Miller

  • Park, Jun-Chul;Kim, Keon-Ho;Lee, Dong-Heub;Son, Dong-Won;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.2
    • /
    • pp.140-147
    • /
    • 2011
  • The strength properties of wooden retaining wall which was made with pitch pine were evaluated. Wooden retaining wall was made with diameter 90 mm of pitch pine round posts treated with CUAZ-2 (Copper Azole). The length of the front stretcher of the retaining wall was 3,000 mm. The distance between the headers (the notched member) is 1,000 mm in center and is 900 mm in side. There were connections every 2,000 mm because actually the length of stretcher is limited in the retaining wall. The strength test was carried out according to connection type because the section between stretchers can act as a defect. A result of the strength test according to connection type confirms that connection does not act as defect because the strength of retaining wall in single stretcher is similar to that in the section between stretchers. The strength test of the wooden retaining wall was carried out in 5 types according to the condition of the base section. When the upper soil pressure was 9.8 kN/$m^2$, the maximum load of the retaining wall fixing the front foundation shows higher values than those of others. But the total deformation is lower in the retaining wall not to fix a base section than in that to fix a base section. It is thought that the retaining wall not to fix a base section shows low value because the deformation is distributed throughout the retaining wall and it is confirmed that the soil pressure affects supporting the structure because the deformation of the retaining wall under low pressure is 3~4 fold higher than those of others. The failure mode of the retaining wall is the overturning type because the high section is deformed. Mostly, the failure mode is the separation of the header in the notched section.

Defect Depth Measurement of Straight Pipe Specimen Using Shearography (전단간섭계를 이용한 직관시험편의 결함 깊이 측정)

  • Chang, Ho-Seob;Kim, Kyung-Suk
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.2
    • /
    • pp.170-176
    • /
    • 2012
  • In the nuclear industry, wall thinning defect of straight pipe occur the enormous loss in life evaluation and safety evaluation. To use non-destructive technique, we measure deformation, vibration, defect evaluation. But, this techniques are a weak that is the measurement of the wide area is difficult and the time is caught long. In the secondary side of nuclear power plants mostly used steel pipe, artificiality wall thinning defect make in the side and different thickness make to the each other, wall thinning defect part of deformation measure by using shearography. In addition, optical measurement through deformation, vibration, defect evaluation evaluate pipe and thickness defects of pressure vessel is to evaluate quantitatively. By shearography interferometry to measure the pipe's internal wall thinning defect and the variation of pressure use the proposed technique, the quantitative defect is to evaluate the thickness of the surplus. The amount of deformation use thickness of surplus prediction of the actual thickness defect and approximately 7 percent error by ensure reliability. According to pressure the amount of deformation and the thickness of the surplus through DB construction, nuclear power plant pipe use wall thinning part soundness evaluation. In this study, pressure vessel of thickness defect measure proposed nuclear pipe of wall thinning defect prediction and integrity assessment technology development. As a basic research defected theory and experiment, pressure vessel of advanced stability and soundness and maintainability is expected to contribute foundation establishment.