• 제목/요약/키워드: wall crack

검색결과 388건 처리시간 0.024초

Ramifications of Structural Deformations on Collapse Loads of Critically Cracked Pipe Bends Under In-Plane Bending and Internal Pressure

  • Sasidharan, Sumesh;Arunachalam, Veerappan;Subramaniam, Shanmugam
    • Nuclear Engineering and Technology
    • /
    • 제49권1호
    • /
    • pp.254-266
    • /
    • 2017
  • Finite-element analysis based on elastic-perfectly plastic material was conducted to examine the influence of structural deformations on collapse loads of circumferential through-wall critically cracked $90^{\circ}$ pipe bends undergoing in-plane closing bending and internal pressure. The critical crack is defined for a through-wall circumferential crack at the extrados with a subtended angle below which there is no weakening effect on collapse moment of elbows subjected to in-plane closing bending. Elliptical and semioval cross sections were postulated at the bend regions and compared. Twice-elastic-slope method was utilized to obtain the collapse loads. Structural deformations, namely, ovality and thinning, were each varied from 0% to 20% in steps of 5% and the normalized internal pressure was varied from 0.2 to 0.6. Results indicate that elliptic cross sections were suitable for pipe ratios 5 and 10, whereas for pipe ratio 20, semioval cross sections gave satisfactory solutions. The effect of ovality on collapse loads is significant, although it cancelled out at a certain value of applied internal pressure. Thinning had a negligible effect on collapse loads of bends with crack geometries considered.

점성토로 뒤채움된 중력식옹벽에서의 인장균열 및 수평토압 : 비배수 해석 (Tension Crack and Lateral Pressure on Gravity Wall Backfilled by Cohesive Soil : Undrained Analysis)

  • 정성교;김형수
    • 한국지반공학회지:지반
    • /
    • 제13권4호
    • /
    • pp.135-148
    • /
    • 1997
  • 옹벽에 작용하는 토압을 구하기 위하여 Coulomb이론이 실무에 대부분 사용되고 있지만, 전수평토압의 작용위치를 구할 수 없으므로 토압분포를 삼각형 분포라고 가정하고 있다. 그러나, 수 많은 실내 및 현장실험을 통하여 토압분포가 그렇지 않다는 것으로 규명되었다. 이러한 문제를 극복하기 위한 이론적인 접근이 Handy(1985), Kingsley(1989), Kellogg(1993), 정성교(1993, 1996a) 등에 의하여 비 점성토로 뒤채움된 옹벽에 대하여 수행되었다. 점성토로 뒤채움된 옹벽에 대한 기존의 이론적 접근은 단지 Rankine또는 Coulomb 이론에 근거하여 주로 수행되었지만, 그 이론들은 제각기 다른 결과를 보여주었다. 여기서는 점성토로 뒤채움된 중력식옹벽에 작용하는 수평토압을 위한 이론적 접근이 비배수 조건하에서 수행되었다. 이 접근은 Coulomb의 가정에 바탕을 두고 아칭개념을도입하였으며, 인장균열을 무시한 경우와 고려한 경우에 대하여 각각 이론식이 유도되었다. 그리고, 몇가지 조건에 대한 비교결과에서 인장균열을 고려한 토압이론식의 적용이 합리적일 것으로 사료되었다.

  • PDF

하중-균열열림변위를 이용한 굽힘하중이 작용하는 원주방향 관통균열 배관의 새로운 J 실험법 (New J Testing Method Using Load-COD Curve for Circumferential Through-Wall Cracked Pipes under Bending)

  • 허남수;김윤재;김영진
    • 대한기계학회논문집A
    • /
    • 제30권1호
    • /
    • pp.60-65
    • /
    • 2006
  • The present paper provides experimental J estimation equation for the circumferential through-wall cracked pipe under four-point bending, based on the load-crack opening displacement (COD) record. Based on the limit analysis and the kinematically admissible rigid-body rotation field, the plastic ${\eta}$-factor for the load-COD record is derived and is compared with that for the load-load line displacement record. Comparison with the J results from detailed elastic-plastic finite element (FE) analysis shows that the proposed method based on the load-COD record provides reliable J estimates even for shallow cracks, whereas the conventional approach based on the load-load line displacement record gives erroneous results for shallow cracks. Thus, the proposed J estimation method could be recommended for testing the circumferential through-wall cracked pipe, particularly with shallow cracks.

중유발전소의 재열기관 균열 해석 (Analysis of Reheater Pipe Crack for Oil Power Plant)

  • 홍성호;홍성주
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.643-647
    • /
    • 2003
  • Power plant Piping operating at elevated temperature often fails prematurely by the growth of microcracks under creep conditions. Therefore, the life assessment of high temperature components that contain cracks is an important technological problem. The mechanisms of crack growth in simple metals and alloys have been investigated using both mechanical and microstructural approaches. In this study, life prediction accounting for creep, crack growth and thermal stress is analyzed.

  • PDF

Computer modeling of crack propagation in concrete retaining walls: A case study

  • Azarafza, Mehdi;Feizi-Derakhshi, Mohammad-Reza;Azarafza, Mohammad
    • Computers and Concrete
    • /
    • 제19권5호
    • /
    • pp.509-514
    • /
    • 2017
  • Concrete retaining walls are the most common types of geotechnical structures for controlling instable slopes resulting from lateral pressure. In analytical stability, calculation of the concrete retaining walls is regarded as a rigid mass when its safety is required. When cracks in these structures are created, the stability may be enforced and causes to defeat. Therefore, identification, creation and propagation of cracks are among the important steps in control of lacks and stabilization. Using the numerical methods for simulation of crack propagation in concrete retaining walls bodies are among the new aspects of geotechnical analysis. Among the considered analytical methods in geotechnical appraisal, the boundary element method (BEM) for simulation of crack propagation in concrete retaining walls is very convenient. Considered concrete retaining wall of this paper is Pars Power Plant structured in south side in Assalouyeh, SW of Iran. This wall's type is RW6 with 11 m height and 440 m length and endurance of refinery construction lateral forces. To evaluate displacement and stress distributions (${\sigma}_{1,max}/{\sigma}_{3,min}$), the surrounding, especially in tip and its opening crack BEM, is considered an appropriate method. By considering the result of this study, with accurate simulation of crack propagation, it is possible to determine the final status of progressive failure in concrete retaining walls and anticipate the suitable stabilization method.

The effect of crack length on SIF and elastic COD for elbow with circumferential through wall crack

  • Kim, Min Kyu;Jeon, Jun Hyeok;Choi, Jae Boong;Kim, Moon Ki
    • Nuclear Engineering and Technology
    • /
    • 제52권9호
    • /
    • pp.2092-2099
    • /
    • 2020
  • Many damages due to flow-accelerated corrosion and cracking have been observed during recent in-service inspections of nuclear power plants. To determine the operability or repair for damaged pipes, an integrity evaluation related to the damaged piping system should be performed by using already proven code and standards. One of them, the ASME Code Case is most popularly used to integrity assessment in nuclear power plants. However, the recent version of CC N-513 still recommends the simplified method which means a damaged elbow is assumed as an equivalent straight pipe. In addition, to enhance the accuracy integrity assessment in elbow, several previous studies recommend that the SIF and elastic COD values for an elbow with relatively large crack could be predicted by an interpolation technique. However, those estimates for elbow with relatively large crack might be derived to inaccurate results for crack growth analysis, such as for the allowable crack size and life estimation. Therefore, in this paper, the effect of crack length (0.3≤θ1/π≤0.5) on SIF and elastic COD for elbow is systematically investigated. Then, for large crack in elbow, accurate estimates for SIF and elastic COD, which are widely used to assess the integrity of elbows, are proposed. Those proposed solutions are expected to be the technical basis for revisions of CC N-513-4 through the validation.

딥러닝과 전이학습을 이용한 콘크리트 균열 인식 및 시각화 (Recognition and Visualization of Crack on Concrete Wall using Deep Learning and Transfer Learning)

  • 이상익;양경모;이제명;이종혁;정영준;이준구;최원
    • 한국농공학회논문집
    • /
    • 제61권3호
    • /
    • pp.55-65
    • /
    • 2019
  • Although crack on concrete exists from its early formation, crack requires attention as it affects stiffness of structure and can lead demolition of structure as it grows. Detecting cracks on concrete is needed to take action prior to performance degradation of structure, and deep learning can be utilized for it. In this study, transfer learning, one of the deep learning techniques, was used to detect the crack, as the amount of crack's image data was limited. Pre-trained Inception-v3 was applied as a base model for the transfer learning. Web scrapping was utilized to fetch images of concrete wall with or without crack from web. In the recognition of crack, image post-process including changing size or removing color were applied. In the visualization of crack, source images divided into 30px, 50px or 100px size were used as input data, and different numbers of input data per category were applied for each case. With the results of visualized crack image, false positive and false negative errors were examined. Highest accuracy for the recognizing crack was achieved when the source images were adjusted into 224px size under gray-scale. In visualization, the result using 50 data per category under 100px interval size showed the smallest error. With regard to the false positive error, the best result was obtained using 400 data per category, and regarding to the false negative error, the case using 50 data per category showed the best result.

감육배관의 굽힘하중에 의한 손상모드와 파괴거동 평가 (Failure Mode and Fracture Behavior Evaluation of Pipes with Local Wall Thinning Subjected to Bending Load)

  • 안석환;남기우;김선진;김진환;김현수;도재윤
    • 대한기계학회논문집A
    • /
    • 제27권1호
    • /
    • pp.8-17
    • /
    • 2003
  • Fracture behaviors of pipes with local wall thinning are very important for the integrity of nuclear Power Plant. In Pipes of energy Plants, sometimes, the local wall thinning may result from severe erosion-corrosion (E/C) damage. However, the effects of local wall thinning on strength and fracture behaviors of piping system were not well studied. In this paper, the monotonic bending tests were performed of full-scale carbon steel pipes with local wall thinning. A monotonic bending load was applied to straight pipe specimens by four-point loading at ambient temperature without internal pressure. From the tests, fracture behaviors and fracture strength of locally thinned pipe were manifested systematically. The observed failure modes were divided into four types; ovalization. crack initiation/growth after ovalization, local buckling and crack initiation/growth after local buckling. Also, the strength and the allowable limit of piping system with local wall thinning were evaluated.

부식된 얇은 원통 압력용기의 파손 거동 해석 (Analysis of Failure Behavior for Thin Cylinder Pressure Vessel with Corrosion)

  • 윤자문;최문오;안석환;남기우;안등 주
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2006년 창립20주년기념 정기학술대회 및 국제워크샵
    • /
    • pp.230-232
    • /
    • 2006
  • Failure behaviors of thin cylinder with corrosion are very important for the integrity of boiler and pressure vessel system. In this study, FEM with internal pressure are conducted on 1000 mm diameter (length 3000 mm and thickness, 5.9 mm) SS400 carbon steel. Failure behaviors of locally wall thinned cylinders were calculated by elasto-plastic analysis using finite element method. The elasto-plastic analysis was performed by FE code ANSYS. We simulated various types of local wall thinning that can be occurred at cylinder surface due to corrosion. Locally wall thinned shapes were machined to be different in size along the circumferential or axial direction of straight cylinder. In case of local wall thinned length 30 mm, internal pressure, when the crack initiation and the plastic collapse occur, didn't decrease dramatically even though local wall thinned depth was deep. In 400 mm, the more local wall thinned depth is deep, the more internal pressure decreased dramatically. In degraded materials, crack is easily initiation but plastic collapse was difficult.

  • PDF

내압이 작용하는 직관과 엘보우의 경계면에 존재하는 원주방향 관통균열의 응력확대계수 및 탄성 균열열림변위 예측식 (Closed-Form Solutions for Stress Intensity Factor and Elastic Crack Opening Displacement for Circumferential Through-Wall Cracks in the Interface between an Elbow and a Straight Pipe under Internal Pressure)

  • 장윤영;정재욱;허남수;김기석;조우연
    • 한국생산제조학회지
    • /
    • 제24권5호
    • /
    • pp.553-560
    • /
    • 2015
  • Fracture mechanics analysis for cracked pipes is essential for applying the leak-before-break (LBB) concept to nuclear piping design. For LBB assessment, crack instability and leak rate should be predicted accurately for through-wall cracked pipes. In a nuclear piping system, elbows are connected with straight pipes by circumferential welding; this weld region is often considered a critical location. Hence, accurate crack assessment is necessary for cracks in the interface between elbows and straight pipes. In this study, the stress intensity factor (SIF) and elastic crack opening displacement (COD) were estimated through detailed 3D elastic finite element (FE) analyses. Based on the results, closed-form solutions of shape factors for calculating the SIFs and elastic CODs were proposed for circumferential through-wall cracks in the abovementioned interfaces under internal pressure. In addition, the effect of the elbow on shape factors was investigated by comparing the results with the existing solutions for a straight pipe.