• Title/Summary/Keyword: wall crack

Search Result 388, Processing Time 0.034 seconds

A Study on the Corrosion According to Post-Forming Treatment of a Horizontal Side Wall Sprinkler Head Deflector (측벽형 스프링클러 헤드 디플렉터의 성헝후처리에 따른 부식특성에 관한 연구)

  • 민인홍;전동일;김형종;박종연
    • Fire Science and Engineering
    • /
    • v.16 no.1
    • /
    • pp.77-83
    • /
    • 2002
  • The objective of this study is to propose a method to prevent the possible stress corrosion cracking of a horizontal side-wall sprinkler head deflector in the same atmosphere of ammonia gas as it regulated in the UL (Underwriters Laboratory). A corrosion test is carried out for three types of specimen according to post-forming treatment, one of which is annealing, another sand blasting and the other no treatment. The observation of the test specimens with a metal micro-scope says that the tensile residual stress is a major factor causing corrosion cracking, and that a proper heat treatment can remove or reduce the residial stress and prevent a crack from occurring even in a severe corrosive atmosphers.

A study on forming analysis for the soft pipe bending process of thickness guarantee (연질파이프의 두께보증형 벤딩공정에 대한 성형해석에 대한 연구)

  • Jung, Dong-Won;Jeong, Ji-Hyun;Cho, Jong-Rae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.1
    • /
    • pp.66-71
    • /
    • 2013
  • Soft bending pipe is widely used for freezing equipment and shipbuilding. These pipe have some problems that they cause occasionally outside wrinkle, crack, wall thinning phenomena. However, vending machines which have been made to solve the problems completely, are not yet. In this study, to settle these problems, we proved the effectiveness of the self-made mandrel by results of simulation as the basic for the development of precision high-quality vending machine ; presents the solution method of the wall thinning phenomena by analyzing circular deformation and damage of bending pipe.

Application of enhanced Reference Stress Method to Nuclear Piping LBB Analysis : Finite Element Validation (원자력 배관의 파단전누설 해석을 위한 개선된 참조응력법의 수치해석적 검증)

  • Heo, Nam-Su;Kim, Yun-Jae;Kim, Yeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.4
    • /
    • pp.741-747
    • /
    • 2001
  • Three-dimensional, elastic-plastic finite element analyses for circumferential through-wall cracked pipes are performed using actual tensile data of stainless steels, for two purposes. The first one is to validate the recently-proposed enhanced reference stress (ERS) method to estimate the J-integral and COD for circumferential through-wall cracked pipes. The second one is to compare those results with the GE/EPRI estimations. It is found that the J-integral and COD estimations according to the GE/EPRI method can be very sensitive to how the stress-strain data are fitted using the Ramberg-Osgood relation. Moreover, no tendency can be found regarding the most appropriate fitting range for the Ramberg-Osgood fit. On the contrary, the J-integral and COD estimations based on the ERS method give more accurate results than the GE/EPRI estimation. The present results provide confidence in applying the proposed method to the Leak-Before-Break(LBB) analysis.

Experimental Research for Identification of Thermal Stratification Phenomena in The Nuclear Powerplant Emergency Core Coolant System(ECCS). (원전 비상 노심냉각계통 배관 열성층화 현상 규명을 위한 실험적 연구)

  • Song, Dho-In;Choi, Young-Don;Park, Min-Su
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.735-740
    • /
    • 2001
  • In the nuclear power plant, emergency core coolant system(ECCS) is furnished at reactor coolant system(RCS) in order to cool down high temperature water in case of emergency. However, in this coolant system, it occurs thermal stratification phenomena in case that there is the mixing of cooling water and high temperature water due to valve leakage in ECCS. This thermal stratification phenomena raises excessive thermal stresses at pipe wall. Therefore, this phenomena causes the accident that reactor coolant flows in reactor containment in the nuclear power plant due to the deformation of pipe and thermal fatigue crack(TFC) at the pipe wall around the place that it exists. Hence, in order to fundamental identification of this phenomena, it requires the experimental research of modeling test in the pipe flow that occurs thermal stratification phenomena. So, this paper models RCS and ECCS pipe arrangement and analyzes the mechanism of thermal stratification phenomena by measuring of temperature in variance with leakage flow rate in ECCS modeled pipe and Reynold number in RCS modeled pipe. Besides, results of this experiment is compared with computational analysis which is done in advance.

  • PDF

Generation of Pressure/Temperature Limit Curve for Reactor Operation (원자로 운전을 위한 압력/온도 한계곡선의 설정)

  • 정명조;박윤원
    • Computational Structural Engineering
    • /
    • v.10 no.4
    • /
    • pp.155-164
    • /
    • 1997
  • A reactor pressure vessel, which contains fuel assemblies and reactor vessel internals, has the thermal stress resulting from the cool-down and heat-up of the vessel wall in combination with the pressure stress from system pressure resulting in large stresses. The combination of the pressure stress and thermal stress along with a decrease in fracture toughness may cause through-wall propagation of a relatively small crack. Therefore, it is necessary to define the relations between operating pressure and temperature during cool-down and heat-up. In this study, theory of fracture mechanics for a pressure/temperature limit curve is investigated and a numerical procedure for generating it is developed. Plant-specific limit curves for the Kori unit 1 plant, the oldest nuclear power plant in Korea, have been obtained for several cooling and heating rates and their results are discussed.

  • PDF

The bubble problem of the plasma facing material: A finite element study

  • Kang, Xiaoyan;Cheng, Xiyue;Deng, Shuiquan
    • Nuclear Engineering and Technology
    • /
    • v.52 no.10
    • /
    • pp.2290-2298
    • /
    • 2020
  • The damage of first wall material in fusion reactor due to the bubbles caused by plasma has been studied by introducing a relation between the von Mises equivalent stress and the temperature field. The locations and shapes of the bubbles and the synergetic effect between the different bubbles under steady operational conditions have been studied using the finite elements method. Under transient heat loads, plastic deformations have been found to occur, and are significantly enhanced by the presence of the bubbles. The calculated concentration locations of von Mises equivalent stress are well consistent with the observed crack positions of the tungsten surface in many test experiments. Our simulations show that the damage of the bubbles is not severe enough to lead to catastrophic failure of the tungsten armor; however, it can cause local and gradual detachment of tungsten surface, which provides a reasonable explanation for the observed pits and rough or hairy surface morphology etc. Considering the transient heat loads, the lower bound of the security thickness of the tungsten tile is estimated to be greater than 2 mm.

Architectural and Interior Design of Doorae Engineering & Construction Head Office (두레종합건설 본사사옥 설계)

  • Park, Young-Ho
    • Proceedings of the Korean Institute of Interior Design Conference
    • /
    • 2005.05a
    • /
    • pp.271-272
    • /
    • 2005
  • As regards of designing, I chose a simple wall design of repeating pattern of vertical windows, rather than making the building as a glamourous obzet. This kind of approach was intended to pursue strong image of construction company, interchanging and communicating with its confused surrounding. Therefore, I boldly removed parts that I considered needless from the facade, and used simple and easy words clearly implying the organization. Lobby is the face of the building, but since the space is deep and narrow and the reality of lease should be considered, there was limit to give original image to the lobby. Instead, high ceiling is the biggest feature of this space. Doorae Engineering-Construction Corp. is young and energetic company. I wanted to highlight the young and energetic image of the company by crossing tore oblique piece of boards. This doesn't just has a simple function as ceiling, but also work as a major subject in the space. In addition of this powerful space of oblique lines, indirect lighting is used to emphasize the character of territory, continuity and deepness of the space. Character of territory that divides main and supplementary function and main and supplementary moving line is expressed by flow of dimension, and continuity and deepness of space is emphasized by indirect lighting flowing linearly through the crack between the ceiling and the wall.

  • PDF

Evaluation of Reinforcement Effect of Rock Bolts in Anisotropic Rock Mass Using Tunnel Scaled Model Tests (터널 축소모형실험을 통한 이방성 암반내 록볼트의 보강효과 검토)

  • Kim, Jong-Woo
    • Tunnel and Underground Space
    • /
    • v.28 no.5
    • /
    • pp.442-456
    • /
    • 2018
  • Scaled model tests were performed to evaluate the reinforcement effect of rock bolts in anisotropic rock mass. For this purpose, two tunnel cases were experimented which had different tunnel sizes, rock strengths, anisotropic angles and coefficients of lateral pressure. The fully grouted rock bolts of the D25 deformed bar were modeled as the basting pins with bead and were systematically installed at the roof and the side wall of the model tunnel. As results of the first case experimentations, the unsupported model showed initial crack at the roof of tunnel, but the supported model with rock bolts showed initial crack at the floor of tunnel where rock bolts were not installed. The crack initiating pressure and the maximum pressure of the supported model with rock bolts were 11% and 7% larger than those of the unsupported model, respectively. Moreover, the effect of the existing discontinuities in anisotropic rock mass on the fracture behavior of tunnel was reduced in the supported model, and so the reinforcement effect of rock bolt turned out to be experimentally verified. As results of the second case experimentations considering different support patterns, the crack initiating pressures of models were larger and the reduction ratios of tunnel area according to applied load were smaller as the length and the quantity of rock bolts were larger. Therefore, it was found that the performance of the rock bolts turned out to be improved as they were larger.

Crack Growth Analysis due to PWSCC in Dissimilar Metal Butt Weld for Reactor Piping Considering Hydrostatic and Normal Operating Conditions (수압시험 및 정상운전 하중을 고려한 원자로 배관 이종금속 맞대기 용접부 응력부식균열 성장 해석)

  • Lee, Hwee-Sueng;Huh, Nam-Su;Lee, Seung-Gun;Park, Heung-Bae;Lee, Sung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.1
    • /
    • pp.47-54
    • /
    • 2013
  • This study investigates the crack growth behavior due to primary water stress corrosion cracking (PWSCC) in the dissimilar metal butt weld of a reactor piping using Alloy 82/182. First, detailed finite element stress analyses were performed to predict the stress distribution of the dissimilar metal butt weld in which the hydrostatic and the normal operating loads as well as the weld residual stresses were considered to evaluate the stress redistribution due to mechanical loadings. Based on the stress distributions along the wall thickness of the dissimilar metal butt weld, the crack growth behavior of the postulated axial and circumferential cracks were predicted, from which the crack growth diagram due to PWSCC was proposed. The present results can be applied to predict the crack growth rate in the dissimilar metal butt weld of reactor piping due to PWSCC.

Nondestructive investigation of clay wall structure containing traditional mural paintings. - The clay walls having mural paintings housed in the protective building in Muwisa Temple, Kangjin, Jeollanamde Province - (전통 벽화의 토벽체 비파괴진단 조사연구 - 강진 무위사 벽화보존각내 벽화를 중심으로 -)

  • Chae, Sang-Jeong;Yang, Hee-Jae;Han, Kyeong-Soon
    • Journal of Conservation Science
    • /
    • v.18 s.18
    • /
    • pp.51-62
    • /
    • 2006
  • This study, in order to do a nondestructive research on the mural walls kept in the protective house in Muwisa Temple, Kangjin, took four examinations; particle size analysis, XRD analysis, ultrasonic investigation, and thermo-infrared investigation. Component ratio of mural wall varied; clay of wall bodies consisted of gravel of 1.78 g, sand of 5.39 g, silt of 4.91 g and clay of 6.26 g. Ultrasonic velocity and one-axis compression strength tests done with eight mural-painted walls yield results as follows; the value of ultrasonic velocity ranged between 71.63 and 3610.11 m/s with the average of 417.44 m/s and on-axis compression strength ranged between 70.34 and $533.28kg/cm^2$ with the average of $83.23kg/cm^2$. The value increased in the order of Bosaldo(No.6)

  • PDF